Fixed point free maps of a closed ball with small measures of noncompactness.
We show that in all infinite-dimensional normed spaces it is possible to construct a fixed point free continuous map of the unit ball whose measure of noncompactness is bounded by 2. Moreover, for a large class of spaces (containing separable spaces, Hilbert spaces and l-infinity (S)) even the best possible bound 1 is attained for certain measures of noncompactness.