Random fixed point theorems for nonexpansive and contractive-type random operators on Banach spaces. Beg, Ismat, Shahzad, Naseer (1994) Journal of Applied Mathematics and Stochastic Analysis
Random Fixed Point Theorems For Ultimately Compact Operators. Gerhard Schleinkofer (1982) Revista colombiana de matematicas
Ranges of a -homogeneous operators and their perturbations Pavel Drábek (1980) Časopis pro pěstování matematiky
Rapidly Convergent Recursive Solution of Quadratic Operator Equations. R.B. LEIPNIK (1971) Numerische Mathematik
Régularisation pour les problèmes à opérateurs monotones et la méthode de Galerkin Ştefan Cruceanu (1971) Commentationes Mathematicae Universitatis Carolinae
Relative boundedness conditions and the perturbation of nonlinear operators H. M. Riedl, Glenn F. Webb (1974) Czechoslovak Mathematical Journal
Remark on the Fredholm alternative for nonlinear operators with application to nonlinear integral equations of generalized Hammerstein type Jindřich Nečas (1972) Commentationes Mathematicae Universitatis Carolinae
Remark to the dependence of solution of nonlinear operator equation on the space in which it is solved Pavel Doktor (1975) Czechoslovak Mathematical Journal
Remarks on inflated mappings Vladimír Janovský, Drahoslava Janovská (1987) Commentationes Mathematicae Universitatis Carolinae
Remarks on invariant subspaces and Lp-solutions of the Schrödinger evolution equation. M.J. Huang (1996) Semigroup forum
Remarks on Krasnoselskii bifurcation theorem Raffaele Chiappinelli (1989) Commentationes Mathematicae Universitatis Carolinae
Remarks on quadratic equations in Banach space. Argyros, Ioannis K. (1990) International Journal of Mathematics and Mathematical Sciences
Remarks on the solvability and nonsolvability of weakly nonlinear equations Svatopluk Fučík (1976) Commentationes Mathematicae Universitatis Carolinae
Remarks to weakly continuous inverse operators and an application in hyperelasticity Milan Konečný (1999) Acta Mathematica et Informatica Universitatis Ostraviensis
Remarques sur les équations de Navier-Stokes stationnaires C. Foias, J. C. Saut (1983) Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Résolution de l’équation A u + B u = f où A est linéaire et B dérive d’un potentiel convexe Jean-Michel Coron (1979) Annales de la Faculté des sciences de Toulouse : Mathématiques
Résolution des équations semilinéaires avec la partie linéaire à noyau de dimension infinie via des applications A-propres [Book] Wiesław Krawcewicz (1990)
Rothe's Method and Weak Solutions of Perturbed Evolution Equations in Reflexive Banach Spaces. A.G. Kartsatos, W.R. Zigler (1976) Mathematische Annalen