Saddle Points and Multiple Solutions of Differential Equations.
Let X be a real Banach space and G ⊂ X open and bounded. Assume that one of the following conditions is satisfied: (i) X* is uniformly convex and T:Ḡ→ X is demicontinuous and accretive; (ii) T:Ḡ→ X is continuous and accretive; (iii) T:X ⊃ D(T)→ X is m-accretive and Ḡ ⊂ D(T). Assume, further, that M ⊂ X is pathwise connected and such that M ∩ TG ≠ ∅ and . Then . If, moreover, Case (i) or (ii) holds and T is of type , or Case (iii) holds and T is of type , then M ⊂ TG. Various results of Morales,...
Les solutions d’équations d’évolution où est un opérateur maximal monotone d’un espace de Hilbert , et sont étudiées dans le cas général en introduisant une notion de solution faible. Des résultats particuliers sont donnés lorsque est de dimension finie ou plus généralement lorsque l’intérieur de est non vide.
Let : be a continuous function, : a function in and let , be given. It is proved that Duffing’s equation , , , in the presence of the damping term has at least one solution provided there exists an such that for and . It is further proved that if is strictly increasing on with , and it Lipschitz continuous with Lipschitz constant , then Duffing’s equation given above has exactly one solution for every .
This paper deals with the generalized nonlinear third-order left focal problem at resonance where the nonlinear term is a Carathéodory function and contains explicitly the first and second-order derivatives of the unknown function. The boundary conditions that we study are quite general, involve a linearity and include, as particular cases, Sturm-Liouville boundary conditions. Under certain growth conditions on the nonlinearity, we establish the existence of the nontrivial solutions by using the...
We are interested of the Newton type mixed problem for the general second order semilinear evolution equation. Applying Nikolskij’s decomposition theorem and general Fredholm operator theory results, the present paper yields sufficient conditions for generic properties, surjectivity and bifurcation sets of the given problem.