The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We derive estimates for various quantities which are of interest in the analysis of the Ginzburg-Landau equation, and which we bound in terms of the -energy and the parameter . These estimates are local in nature, and in particular independent of any boundary condition. Most of them improve and extend earlier results on the subject.
In this paper we investigate the existence of solutions to impulsive problems with a -Laplacian and Dirichlet boundary value conditions. We introduce two types of solutions, namely a weak and a classical one which coincide because of the fundamental lemma of the calculus of variations. Firstly we investigate the existence of solution to the linear problem, i.e. a problem with a fixed rigth hand side. Then we use a direct variational method and next a mountain pass approach in order to get the existence...
We present two results on existence of infinitely many positive solutions to the Neumann problem
⎧ in Ω,
⎨
⎩ ∂u/∂ν = 0 on ∂Ω,
where is a bounded open set with sufficiently smooth boundary ∂Ω, ν is the outer unit normal vector to ∂Ω, p > 1, μ > 0, with and f: Ω × ℝ → ℝ is a Carathéodory function. Our results ensure the existence of a sequence of nonzero and nonnegative weak solutions to the above problem.
We introduce a method to treat a semilinear elliptic equation in (see equation (1) below). This method is of a perturbative nature. It permits us to skip the problem of lack of compactness of but requires an oscillatory behavior of the potential b.
Using the critical point theory and the method of lower and upper solutions, we present a new approach to obtain the existence of solutions to a -Laplacian impulsive problem. As applications, we get unbounded sequences of solutions and sequences of arbitrarily small positive solutions of the -Laplacian impulsive problem.
Currently displaying 1 –
6 of
6