The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 6 of 6

Showing per page

Improved estimates for the Ginzburg-Landau equation : the elliptic case

Fabrice Bethuel, Giandomenico Orlandi, Didier Smets (2005)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We derive estimates for various quantities which are of interest in the analysis of the Ginzburg-Landau equation, and which we bound in terms of the G L -energy E ε and the parameter ε . These estimates are local in nature, and in particular independent of any boundary condition. Most of them improve and extend earlier results on the subject.

Impulsive boundary value problems for p ( t ) -Laplacian’s via critical point theory

Marek Galewski, Donal O'Regan (2012)

Czechoslovak Mathematical Journal

In this paper we investigate the existence of solutions to impulsive problems with a p ( t ) -Laplacian and Dirichlet boundary value conditions. We introduce two types of solutions, namely a weak and a classical one which coincide because of the fundamental lemma of the calculus of variations. Firstly we investigate the existence of solution to the linear problem, i.e. a problem with a fixed rigth hand side. Then we use a direct variational method and next a mountain pass approach in order to get the existence...

Infinitely many positive solutions for the Neumann problem involving the p-Laplacian

Giovanni Anello, Giuseppe Cordaro (2003)

Colloquium Mathematicae

We present two results on existence of infinitely many positive solutions to the Neumann problem ⎧ - Δ p u + λ ( x ) | u | p - 2 u = μ f ( x , u ) in Ω, ⎨ ⎩ ∂u/∂ν = 0 on ∂Ω, where Ω N is a bounded open set with sufficiently smooth boundary ∂Ω, ν is the outer unit normal vector to ∂Ω, p > 1, μ > 0, λ L ( Ω ) with e s s i n f x Ω λ ( x ) > 0 and f: Ω × ℝ → ℝ is a Carathéodory function. Our results ensure the existence of a sequence of nonzero and nonnegative weak solutions to the above problem.

Infinitely many solutions of a second-order p -Laplacian problem with impulsive condition

Libo Wang, Weigao Ge, Minghe Pei (2010)

Applications of Mathematics

Using the critical point theory and the method of lower and upper solutions, we present a new approach to obtain the existence of solutions to a p -Laplacian impulsive problem. As applications, we get unbounded sequences of solutions and sequences of arbitrarily small positive solutions of the p -Laplacian impulsive problem.

Currently displaying 1 – 6 of 6

Page 1