Page 1 Next

Displaying 1 – 20 of 24

Showing per page

Variational analysis for a nonlinear elliptic problem on the Sierpiński gasket

Gabriele Bonanno, Giovanni Molica Bisci, Vicenţiu Rădulescu (2012)

ESAIM: Control, Optimisation and Calculus of Variations

Under an appropriate oscillating behaviour either at zero or at infinity of the nonlinear term, the existence of a sequence of weak solutions for an eigenvalue Dirichlet problem on the Sierpiński gasket is proved. Our approach is based on variational methods and on some analytic and geometrical properties of the Sierpiński fractal. The abstract results are illustrated by explicit examples.

Variational inequalities in noncompact nonconvex regions

Ching-Yan Lin, Liang-Ju Chu (2003)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper, a general existence theorem on the generalized variational inequality problem GVI(T,C,ϕ) is derived by using our new versions of Nikaidô's coincidence theorem, for the case where the region C is noncompact and nonconvex, but merely is a nearly convex set. Equipped with a kind of V₀-Karamardian condition, this general existence theorem contains some existing ones as special cases. Based on a Saigal condition, we also modify the main theorem to obtain another existence theorem on GVI(T,C,ϕ),...

Vector and operator valued measures as controls for infinite dimensional systems: optimal control

N.U. Ahmed (2008)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper we consider a general class of systems determined by operator valued measures which are assumed to be countably additive in the strong operator topology. This replaces our previous assumption of countable additivity in the uniform operator topology by the weaker assumption. Under the relaxed assumption plus an additional assumption requiring the existence of a dominating measure, we prove some results on existence of solutions and their regularity properties both for linear and semilinear...

Vector integral equations with discontinuous right-hand side

Filippo Cammaroto, Paolo Cubiotti (1999)

Commentationes Mathematicae Universitatis Carolinae

We deal with the integral equation u ( t ) = f ( I g ( t , z ) u ( z ) d z ) , with t I = [ 0 , 1 ] , f : 𝐑 n 𝐑 n and g : I × I [ 0 , + [ . We prove an existence theorem for solutions u L ( I , 𝐑 n ) where the function f is not assumed to be continuous, extending a result previously obtained for the case n = 1 .

Currently displaying 1 – 20 of 24

Page 1 Next