Displaying 201 – 220 of 284

Showing per page

An extragradient iterative scheme by viscosity approximation methods for fixed point problems and variational inequality problems

Adrian Petruşel, Jen-Chih Yao (2009)

Open Mathematics

In this paper, we introduce a new iterative process for finding the common element of the set of fixed points of a nonexpansive mapping and the set of solutions of the variational inequality problem for an α-inverse-strongly-monotone, by combining an modified extragradient scheme with the viscosity approximation method. We prove a strong convergence theorem for the sequences generated by this new iterative process.

An improved convergence analysis of Newton's method for twice Fréchet differentiable operators

Ioannis K. Argyros, Sanjay K. Khattri (2013)

Applicationes Mathematicae

We develop local and semilocal convergence results for Newton's method in order to solve nonlinear equations in a Banach space setting. The results compare favorably to earlier ones utilizing Lipschitz conditions on the second Fréchet derivative of the operators involved. Numerical examples where our new convergence conditions are satisfied but earlier convergence conditions are not satisfied are also reported.

An intermediate value theorem in ordered Banach spaces

Gerd Herzog (2010)

Annales Polonici Mathematici

We prove an intermediate value theorem for certain quasimonotone increasing functions in ordered Banach spaces, under the assumption that each nonempty order bounded chain has a supremum.

Currently displaying 201 – 220 of 284