An iterative method for computing zeros of operators satisfying autonomous differential equations.
2000 Mathematics Subject Classification: 47H04, 65K10.In this article, we study a general iterative procedure of the following form 0 ∈ f(xk)+F(xk+1), where f is a function and F is a set valued map acting from a Banach space X to a linear normed space Y, for solving generalized equations in the nonsmooth framework. We prove that this method is locally Q-linearly convergent to x* a solution of the generalized equation 0 ∈ f(x)+F(x) if the set-valued map [f(x*)+g(·)−g(x*)+F(·)]−1 is Aubin continuous...
We consider the problem of frictional contact between an piezoelectric body and a conductive foundation. The electro-elastic constitutive law is assumed to be nonlinear and the contact is modelled with the Signorini condition, nonlocal Coulomb friction law and a regularized electrical conductivity condition. The existence of a unique weak solution of the model is established. The finite elements approximation for the problem is presented, and error...
In this paper we deal with the anti-periodic boundary value problems with nonlinearity of the form , where Extending to be multivalued we obtain the existence of solutions to hemivariational inequality and variational-hemivariational inequality.
In the paper [13] we proved a fixed point theorem for an operator , which satisfies a generalized Lipschitz condition with respect to a linear bounded operator , that is: The purpose of this paper is to show that the results obtained in [13], [14] can be extended to a nonlinear operator .