Displaying 261 – 280 of 283

Showing per page

Arbitrary number of positive solutions for an elliptic problem with critical nonlinearity

Olivier Rey, Juncheng Wei (2005)

Journal of the European Mathematical Society

We show that the critical nonlinear elliptic Neumann problem Δ u μ u + u 7 / 3 = 0 in Ω , u > 0 in Ω , u ν = 0 on Ω , where Ω is a bounded and smooth domain in 5 , has arbitrarily many solutions, provided that μ > 0 is small enough. More precisely, for any positive integer K , there exists μ K > 0 such that for 0 < μ < μ K , the above problem has a nontrivial solution which blows up at K interior points in Ω , as μ 0 . The location of the blow-up points is related to the domain geometry. The solutions are obtained as critical points of some finite-dimensional...

Asymptotic analysis, existence and sensitivity results for a class of multivalued complementarity problems

Fabián Flores-Bazán, Rubén López (2006)

ESAIM: Control, Optimisation and Calculus of Variations

In this work we study the multivalued complementarity problem on the non-negative orthant. This is carried out by describing the asymptotic behavior of the sequence of approximate solutions to its multivalued variational inequality formulation. By introducing new classes of multifunctions we provide several existence (possibly allowing unbounded solution set), stability as well as sensitivity results which extend and generalize most of the existing ones in the literature. We also present some kind...

Asymptotic behavior of solutions for linear evolutionary boundary value problem of viscoelastic damped wave equation

Mohamed Berbiche (2020)

Mathematica Bohemica

We study the existence of global in time and uniform decay of weak solutions to the initial-boundary value problem related to the dynamic behavior of evolution equation accounting for rotational inertial forces along with a linear nonlocal frictional damping arises in viscoelastic materials. By constructing appropriate Lyapunov functional, we show the solution converges to the equilibrium state polynomially in the energy space.

Asymptotic behaviour for a phase-field model with hysteresis in one-dimensional thermo-visco-plasticity

Olaf Klein (2004)

Applications of Mathematics

The asymptotic behaviour for t of the solutions to a one-dimensional model for thermo-visco-plastic behaviour is investigated in this paper. The model consists of a coupled system of nonlinear partial differential equations, representing the equation of motion, the balance of the internal energy, and a phase evolution equation, determining the evolution of a phase variable. The phase evolution equation can be used to deal with relaxation processes. Rate-independent hysteresis effects in the strain-stress...

Attractors of Strongly Dissipative Systems

A. G. Ramm (2009)

Bulletin of the Polish Academy of Sciences. Mathematics

A class of infinite-dimensional dissipative dynamical systems is defined for which there exists a unique equilibrium point, and the rate of convergence to this point of the trajectories of a dynamical system from the above class is exponential. All the trajectories of the system converge to this point as t → +∞, no matter what the initial conditions are. This class consists of strongly dissipative systems. An example of such systems is provided by passive systems in network theory (see, e.g., MR0601947...

Currently displaying 261 – 280 of 283