Competing Symmetries, the Logarithmic HLS Inequality and Onofri's Inequality on Sn.
In this paper, we introduce and study a new class of completely generalized nonlinear variational inclusions for fuzzy mappings and construct some new iterative algorithms. We prove the existence of solutions for this kind of completely generalized nonlinear variational inclusions and the convergence of iterative sequences generated by the algorithms.
Consider a bifurcation problem, namely, its bifurcation equation. There is a diffeomorphism linking the actual solution set with an unfolded normal form of the bifurcation equation. The differential of this diffeomorphism is a valuable information for a numerical analysis of the imperfect bifurcation. The aim of this paper is to construct algorithms for a computation of . Singularity classes containing bifurcation points with , are considered.
In a recent paper [9] we presented a Galerkin-type Conley index theory for certain classes of infinite-dimensional ODEs without the uniqueness property of the Cauchy problem. In this paper we show how to apply this theory to strongly indefinite elliptic systems. More specifically, we study the elliptic system in Ω, in Ω, u = 0, v = 0 in ∂Ω, (A1) on a smooth bounded domain Ω in for "-"-type Hamiltonians H of class C² satisfying subcritical growth assumptions on their first order derivatives....
The Recursive Projection Method is a technique for continuation of both the steady states and the dominant invariant subspaces. In this paper a modified version of the RPM called projected RPM is proposed. The modification underlines the stabilization effect. In order to improve the poor update of the unstable invariant subspace we have applied subspace iterations preconditioned by Cayley transform. A statement concerning the local convergence of the resulting method is proved. Results of numerical...
We prove that the vector play operator with a uniformly prox-regular characteristic set of constraints is continuous with respect to the -norm and to the -strict metric in the space of rectifiable curves, i.e., in the space of continuous functions of bounded variation. We do not assume any further regularity of the characteristic set. We also prove that the non-convex play operator is rate independent.
Using Fan’s Min-Max Theorem we investigate existence of solutions and their dependence on parameters for some second order discrete boundary value problem. The approach is based on variational methods and solutions are obtained as saddle points to the relevant Euler action functional.