Stability of -additive mappings: Applications to nonlinear analysis.
A parameter dependent nonlinear differential-delay equation in a Banach space is investigated. It is shown that if at the critical value of the parameter the problem satisfies a condition of linearized stability then the problem exhibits a stability which is uniform with respect to the whole range of the parameter values. The general theorem is applied to a diffusion system with applications in biology.
The existence of steady states in the microcanonical case for a system describing the interaction of gravitationally attracting particles with a self-similar pressure term is proved. The system generalizes the Smoluchowski-Poisson equation. The presented theory covers the case of the model with diffusion that obeys the Fermi-Dirac statistic.
2000 Mathematics Subject Classification: 65G99, 65K10, 47H04.We provide a local convergence analysis for Steffensen's method in order to solve a generalized equation in a Banach space setting. Using well known fixed point theorems for set-valued maps [13] and Hölder type conditions introduced by us in [2] for nonlinear equations, we obtain the superlinear local convergence of Steffensen's method. Our results compare favorably with related ones obtained in [11].