A note on implicit functions in locally convex spaces.
The existence of solutions to a scalar Minty variational inequality of differential type is usually related to monotonicity property of the primitive function. On the other hand, solutions of the variational inequality are global minimizers for the primitive function. The present paper generalizes these results to vector variational inequalities putting the Increasing Along Rays (IAR) property into the center of the discussion. To achieve that infinite elements in the image space are introduced....
The existence of solutions to a scalar Minty variational inequality of differential type is usually related to monotonicity property of the primitive function. On the other hand, solutions of the variational inequality are global minimizers for the primitive function. The present paper generalizes these results to vector variational inequalities putting the Increasing Along Rays (IAR) property into the center of the discussion. To achieve that infinite elements in the image space Y are introduced. Under...
A connection between the Landesman-Lazer condition and the solvability of the equation Lx = N(x) in a cone with a noninvertible linear operator L is studied. The result is based on the abstract framework from [5], applied to the existence of periodic solutions of ordinary differential equations, and compared with theorems by Santanilla (see [7]).
We study a nonlinear elliptic system with resonance part and nonlinear boundary conditions on an unbounded domain. Our approach is variational and is based on the well known Landesman-Laser type conditions.
We give a derivation of an a-posteriori strategy for choosing the regularization parameter in Tikhonov regularization for solving nonlinear ill-posed problems, which leads to optimal convergence rates. This strategy requires a special stability estimate for the regularized solutions. A new proof fot this stability estimate is given.
We propose a penalty approach for a box constrained variational inequality problem . This problem is replaced by a sequence of nonlinear equations containing a penalty term. We show that if the penalty parameter tends to infinity, the solution of this sequence converges to that of when the function involved is continuous and strongly monotone and the box contains the origin. We develop the algorithmic aspect with theoretical arguments properly established. The numerical results tested on...
The generalized Wiener-Hopf equation and the approximation methods are used to propose a perturbed iterative method to compute the solutions of a general class of nonlinear variational inequalities.
It is shown that the uniform exponential stability and the uniform stability at permanently acting disturbances of a sufficiently smooth but not necessarily steady-state solution of a general variational inequality is a consequence of the uniform exponential stability of a zero solution of another (so called linearized) variational inequality.