A strong convergence theorem for a common fixed point of two sequences of strictly pseudocontractive mappings in Hilbert spaces and applications.
The existence of at least two solutions for nonlinear equations close to semilinear equations at resonance is obtained by the degree theory methods. The same equations have no solutions if one slightly changes the right-hand side. The abstract result is applied to boundary value problems with specific nonlinearities.
We provide a local as well as a semilocal convergence analysis for Newton's method using unifying hypotheses on twice Fréchet-differentiable operators in a Banach space setting. Our approach extends the applicability of Newton's method. Numerical examples are also provided.
We consider a simple reaction-diffusion system exhibiting Turing's diffusion driven instability if supplemented with classical homogeneous mixed boundary conditions. We consider the case when the Neumann boundary condition is replaced by a unilateral condition of Signorini type on a part of the boundary and show the existence and location of bifurcation of stationary spatially non-homogeneous solutions. The nonsymmetric problem is reformulated as a single variational inequality with a potential...
Given a reaction-diffusion system which exhibits Turing's diffusion-driven instability, the influence of unilateral obstacles of opposite sign (source and sink) on bifurcation and critical points is studied. In particular, in some cases it is shown that spatially nonhomogeneous stationary solutions (spatial patterns) bifurcate from a basic spatially homogeneous steady state for an arbitrarily small ratio of diffusions of inhibitor and activator, while a sufficiently large ratio is necessary in the...
We consider a mathematical model which describes the equilibrium between a viscoelastic body in frictionless contact with an obstacle. The contact is modelled with normal compliance, associated with Signorini's conditions and adhesion. The adhesion is modelled with a surface variable, the bonding field, whose evolution is described by a first-order differential equation. We establish a variational formulation of the mechanical problem and prove the existence and uniqueness of the weak solution....