The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
a recent paper of the first author and Kashyap, a new class of Banach modules over dual operator algebras is introduced. These generalize the W*-modules (that is, Hilbert C*-modules over a von Neumann algebra which satisfy an analogue of the Riesz representation theorem for Hilbert spaces), which in turn generalize Hilbert spaces. In the present paper, we describe these modules, giving some motivation, and we prove several new results about them.
It is proved that for a von Neumann algebra A ⊆ B(ℋ ) the subspace of normal maps is dense in the space of all completely bounded A-bimodule homomorphisms of B(ℋ ) in the point norm topology if and only if the same holds for the corresponding unit balls, which is the case if and only if A is atomic with no central summands of type . Then a duality result for normal operator modules is presented and applied to the following problem. Given an operator space X and a von Neumann algebra A, is the map...
We introduce and study a new concept of strongly -summing m-linear operators in the category of operator spaces. We give some characterizations of this notion such as the Pietsch domination theorem and we show that an m-linear operator is strongly -summing if and only if its adjoint is -summing.
We first study positivity in C*-modules using tripotents ( = partial isometries) which are what we call open. This is then used to study ordered operator spaces via an "ordered noncommutative Shilov boundary" which we introduce. This boundary satisfies the usual universal diagram/property of the noncommutative Shilov boundary, but with all the arrows completely positive. Because of their independent interest, we also systematically study open tripotents and their properties.
Let G be a locally compact group. We use the canonical operator space structure on the spaces for p ∈ [1,∞] introduced by G. Pisier to define operator space analogues of the classical Figà-Talamanca-Herz algebras . If p ∈ (1,∞) is arbitrary, then and the inclusion is a contraction; if p = 2, then OA₂(G) ≅ A(G) as Banach spaces, but not necessarily as operator spaces. We show that is a completely contractive Banach algebra for each p ∈ (1,∞), and that completely contractively for amenable...
Let G be a locally compact group, A(G) its Fourier algebra and L¹(G) the space of Haar integrable functions on G. We study the Segal algebra S¹A(G) = A(G) ∩ L¹(G) in A(G). It admits an operator space structure which makes it a completely contractive Banach algebra. We compute the dual space of S¹A(G). We use it to show that the restriction operator , for some non-open closed subgroups H, is a surjective complete quotient map. We also show that if N is a non-compact closed subgroup, then the averaging...
We generalize an important class of Banach spaces, the M-embedded Banach spaces, to the non-commutative setting of operator spaces. The one-sided M-embedded operator spaces are the operator spaces which are one-sided M-ideals in their second dual. We show that several properties from the classical setting, like the stability under taking subspaces and quotients, unique extension property, Radon-Nikodým property and many more, are retained in the non-commutative setting. We also discuss the dual...
Currently displaying 1 –
7 of
7