Multipliers and hereditary subalgebras of operator algebras
We generalize some technical results of Glicksberg to the realm of general operator algebras and use them to give a characterization of open and closed projections in terms of certain multiplier algebras. This generalizes a theorem of J. Wells characterizing an important class of ideals in uniform algebras. The difficult implication in our main theorem is that if a projection is open in an operator algebra, then the multiplier algebra of the associated hereditary subalgebra arises as the closure...