Noncommutative function theory and unique extensions
We generalize, to the setting of Arveson’s maximal subdiagonal subalgebras of finite von Neumann algebras, the Szegő -distance estimate and classical theorems of F. and M. Riesz, Gleason and Whitney, and Kolmogorov. As a byproduct, this completes the noncommutative analog of the famous cycle of theorems characterizing the function algebraic generalizations of from the 1960’s. A sample of our other results: we prove a Kaplansky density result for a large class of these algebras, and give a necessary...