Displaying 201 – 220 of 538

Showing per page

Existence results for ϕ-Laplacian Dirichlet BVP of differential inclusions with application to control theory

Smaïl Djebali, Abdelghani Ouahab (2010)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper, we study ϕ-Laplacian problems for differential inclusions with Dirichlet boundary conditions. We prove the existence of solutions under both convexity and nonconvexity conditions on the multi-valued right-hand side. The nonlinearity satisfies either a Nagumo-type growth condition or an integrably boundedness one. The proofs rely on the Bonhnenblust-Karlin fixed point theorem and the Bressan-Colombo selection theorem respectively. Two applications to a problem from control theory are...

Existence theory for sequential fractional differential equations with anti-periodic type boundary conditions

Mohammed H. Aqlan, Ahmed Alsaedi, Bashir Ahmad, Juan J. Nieto (2016)

Open Mathematics

We develop the existence theory for sequential fractional differential equations involving Liouville-Caputo fractional derivative equipped with anti-periodic type (non-separated) and nonlocal integral boundary conditions. Several existence criteria depending on the nonlinearity involved in the problems are presented by means of a variety of tools of the fixed point theory. The applicability of the results is shown with the aid of examples. Our results are not only new in the given configuration...

Explicit solutions for boundary value problems related to the operator equations X ( 2 ) - A X = 0

Lucas Jódar, Enrique A. Navarro (1991)

Applications of Mathematics

Cauchy problem, boundary value problems with a boundary value condition and Sturm-Liouville problems related to the operator differential equation X ( 2 ) - A X = 0 are studied for the general case, even when the algebraic equation X 2 - A = 0 is unsolvable. Explicit expressions for the solutions in terms of data problem are given and computable expressions of the solutions for the finite-dimensional case are made available.

Fixed point analysis for non-oscillatory solutions of quasi linear ordinary differential equations

Luisa Malaguti, Valentina Taddei (2005)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

The paper deals with the quasi-linear ordinary differential equation ( r ( t ) ϕ ( u ' ) ) ' + g ( t , u ) = 0 with t [ 0 , ) . We treat the case when g is not necessarily monotone in its second argument and assume usual conditions on r ( t ) and ϕ ( u ) . We find necessary and sufficient conditions for the existence of unbounded non-oscillatory solutions. By means of a fixed point technique we investigate their growth, proving the coexistence of solutions with different asymptotic behaviors. The results generalize previous ones due to Elbert–Kusano, [Acta...

Fourier-like methods for equations with separable variables

Danuta Przeworska-Rolewicz (2009)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

It is well known that a power of a right invertible operator is again right invertible, as well as a polynomial in a right invertible operator under appropriate assumptions. However, a linear combination of right invertible operators (in particular, their sum and/or difference) in general is not right invertible. It will be shown how to solve equations with linear combinations of right invertible operators in commutative algebras using properties of logarithmic and antilogarithmic mappings. The...

Fractional BVPs with strong time singularities and the limit properties of their solutions

Svatoslav Staněk (2014)

Open Mathematics

In the first part, we investigate the singular BVP d d t c D α u + ( a / t ) c D α u = u , u(0) = A, u(1) = B, c D α u(t)|t=0 = 0, where is a continuous operator, α ∈ (0, 1) and a < 0. Here, c D denotes the Caputo fractional derivative. The existence result is proved by the Leray-Schauder nonlinear alternative. The second part establishes the relations between solutions of the sequence of problems d d t c D α n u + ( a / t ) c D α n u = f ( t , u , c D β n u ) , u(0) = A, u(1) = B, c D α n u ( t ) t = 0 = 0 where a < 0, 0 < β n ≤ α n < 1, limn→∞ β n = 1, and solutions of u″+(a/t)u′ = f(t, u, u′) satisfying...

Fractional integro-differential inclusions with state-dependent delay

Khalida Aissani, Mouffak Benchohra, Khalil Ezzinbi (2014)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper, we establish sufficient conditions for the existence of mild solutions for fractional integro-differential inclusions with state-dependent delay. The techniques rely on fractional calculus, multivalued mapping on a bounded set and Bohnenblust-Karlin's fixed point theorem. Finally, we present an example to illustrate the theory.

Currently displaying 201 – 220 of 538