Displaying 241 – 260 of 538

Showing per page

Integro-differential equations on time scales with Henstock-Kurzweil delta integrals

Aneta Sikorska-Nowak (2011)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper we prove existence theorems for integro - differential equations x Δ ( t ) = f ( t , x ( t ) , t k ( t , s , x ( s ) ) Δ s ) , t ∈ Iₐ = [0,a] ∩ T, a ∈ R₊, x(0) = x₀ where T denotes a time scale (nonempty closed subset of real numbers R), Iₐ is a time scale interval. Functions f,k are Carathéodory functions with values in a Banach space E and the integral is taken in the sense of Henstock-Kurzweil delta integral, which generalizes the Henstock-Kurzweil integral. Additionally, functions f and k satisfy some boundary conditions and conditions...

Inverse du Laplacien discret dans le problème de Poisson-Dirichlet à deux dimensions sur un rectangle

Jean Chanzy (2006)

Annales de la faculté des sciences de Toulouse Mathématiques

Ce travail a pour objet l’étude d’une méthode de « discrétisation » du Laplacien dans le problème de Poisson à deux dimensions sur un rectangle, avec des conditions aux limites de Dirichlet. Nous approchons l’opérateur Laplacien par une matrice de Toeplitz à blocs, eux-mêmes de Toeplitz, et nous établissons une formule donnant les blocs de l’inverse de cette matrice. Nous donnons ensuite un développement asymptotique de la trace de la matrice inverse, et du déterminant de la matrice de Toeplitz....

IVPs for singular multi-term fractional differential equations with multiple base points and applications

Yuji Liu, Pinghua Yang (2014)

Applicationes Mathematicae

The purpose of this paper is to study global existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations. By constructing a special Banach space and employing fixed-point theorems, some sufficient conditions are obtained for the global existence and uniqueness of solutions of this kind of equations involving Caputo fractional derivatives and multiple base points. We apply the results to solve the forced logistic model with multi-term fractional...

Large time regular solutions to the MHD equations in cylindrical domains

Wisam Alame, Wojciech M. Zajączkowski (2011)

Applicationes Mathematicae

We prove the large time existence of solutions to the magnetohydrodynamics equations with slip boundary conditions in a cylindrical domain. Assuming smallness of the L₂-norms of the derivatives of the initial velocity and of the magnetic field with respect to the variable along the axis of the cylinder, we are able to obtain an estimate for the velocity and the magnetic field in W 2 , 1 without restriction on their magnitude. Then the existence follows from the Leray-Schauder fixed point theorem.

Local center manifold for parabolic equations with infinite delay

Hana Petzeltová (1994)

Mathematica Bohemica

The existence and attractivity of a local center manifold for fully nonlinear parabolic equation with infinite delay is proved with help of a solutions semigroup constructed on the space of initial conditions. The result is applied to the stability problem for a parabolic integrodifferential equation.

Long time existence of solutions to 2d Navier-Stokes equations with heat convection

Jolanta Socała, Wojciech M. Zajączkowski (2009)

Applicationes Mathematicae

Global existence of regular solutions to the Navier-Stokes equations for (v,p) coupled with the heat convection equation for θ is proved in the two-dimensional case in a bounded domain. We assume the slip boundary conditions for velocity and the Neumann condition for temperature. First an appropriate estimate is shown and next the existence is proved by the Leray-Schauder fixed point theorem. We prove the existence of solutions such that v , θ W s 2 , 1 ( Ω T ) , p L s ( Ω T ) , s>2.

Monotone operators in divergence form with x -dependent multivalued graphs

Gilles Francfort, François Murat, Luc Tartar (2004)

Bollettino dell'Unione Matematica Italiana

We prove the existence of solutions to - div a x , grad u = f , together with appropriate boundary conditions, whenever a x , e is a maximal monotone graph in e , for every fixed x . We propose an adequate setting for this problem, in particular as far as measurability is concerned. It consists in looking at the graph after a 45 rotation, for every fixed x ; in other words, the graph d a x , e is defined through d - e = φ x , d + e , where φ is a Carathéodory contraction in R N . This definition is shown to be equivalent to the fact that a ( x , ) is pointwise monotone...

Currently displaying 241 – 260 of 538