Existence and uniqueness of positive solution for a singular nonlinear second-order -point boundary value problem.
We consider the existence of at least one positive solution to the dynamic boundary value problem where is an arbitrary time scale with and satisfying , , , , and where the boundary conditions at and can be both nonlinear and nonlocal. This extends some recent results on second-order semipositone dynamic boundary value problems, and we illustrate these extensions with some examples.
This paper discusses the existence of mild solutions for a class of semilinear fractional evolution equations with nonlocal initial conditions in an arbitrary Banach space. We assume that the linear part generates an equicontinuous semigroup, and the nonlinear part satisfies noncompactness measure conditions and appropriate growth conditions. An example to illustrate the applications of the abstract result is also given.
The paper deals with the existence of multiple positive solutions for the boundary value problem where is an increasing homeomorphism and a positive homomorphism with . Using a fixed-point theorem for operators on a cone, we provide sufficient conditions for the existence of multiple positive solutions to the above boundary value problem.
The fixed point theorem of Krasnoselskii and the concept of large contractions are employed to show the existence of a periodic solution of a nonlinear integro-differential equation with variable delay We transform this equation and then invert it to obtain a sum of two mappings one of which is completely continuous and the other is a large contraction. We choose suitable conditions for , , , and to show that this sum of mappings fits into the framework of a modification of Krasnoselskii’s...