Displaying 481 – 500 of 538

Showing per page

Spatial patterns for reaction-diffusion systems with conditions described by inclusions

Jan Eisner, Milan Kučera (1997)

Applications of Mathematics

We consider a reaction-diffusion system of the activator-inhibitor type with boundary conditions given by inclusions. We show that there exists a bifurcation point at which stationary but spatially nonconstant solutions (spatial patterns) bifurcate from the branch of trivial solutions. This bifurcation point lies in the domain of stability of the trivial solution to the same system with Dirichlet and Neumann boundary conditions, where a bifurcation of this classical problem is excluded.

Structure of the Hardy operator related to Laguerre polynomials and the Euler differential equation.

Natan Kruglyak, Lech Maligranda, Lars-Erik Persson (2006)

Revista Matemática Complutense

We present a direct proof of a known result that the Hardy operator Hf(x) = 1/x ∫0x f(t) dt in the space L2 = L2(0, ∞) can be written as H = I - U, where U is a shift operator (Uen = en+1, n ∈ Z) for some orthonormal basis {en}. The basis {en} is constructed by using classical Laguerre polynomials. We also explain connections with the Euler differential equation of the first order y' - 1/x y = g and point out some generalizations to the case with weighted Lw2(a, b) spaces.

Studies on BVPs for IFDEs involved with the Riemann-Liouville type fractional derivatives

Yuji Liu (2016)

Nonautonomous Dynamical Systems

In this article, we present a new method for converting the boundary value problems for impulsive fractional differential systems involved with the Riemann-Liouville type derivatives to integral systems, some existence results for solutions of a class of boundary value problems for nonlinear impulsive fractional differential systems at resonance case and non-resonance case are established respectively. Our analysis relies on the well known Schauder’s fixed point theorem and coincidence degree theory....

Study of Stability in Nonlinear Neutral Differential Equations with Variable Delay Using Krasnoselskii–Burton’s Fixed Point

Mouataz Billah MESMOULI, Abdelouaheb Ardjouni, Ahcene Djoudi (2016)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

In this paper, we use a modification of Krasnoselskii’s fixed point theorem introduced by Burton (see [Burton, T. A.: Liapunov functionals, fixed points and stability by Krasnoseskii’s theorem. Nonlinear Stud., 9 (2002), 181–190.] Theorem 3) to obtain stability results of the zero solution of the totally nonlinear neutral differential equation with variable delay x ' t = - a t h x t + d d t Q t , x t - τ t + G t , x t , x t - τ t . The stability of the zero solution of this eqution provided that h 0 = Q t , 0 = G t , 0 , 0 = 0 . The Caratheodory condition is used for the functions Q and G .

System of fractional differential equations with Erdélyi-Kober fractional integral conditions

Natthaphong Thongsalee, Sorasak Laoprasittichok, Sotiris K. Ntouyas, Jessada Tariboon (2015)

Open Mathematics

In this paper we study existence and uniqueness of solutions for a system consisting from fractional differential equations of Riemann-Liouville type subject to nonlocal Erdélyi-Kober fractional integral conditions. The existence and uniqueness of solutions is established by Banach’s contraction principle, while the existence of solutions is derived by using Leray-Schauder’s alternative. Examples illustrating our results are also presented.

The distance between fixed points of some pairs of maps in Banach spaces and applications to differential systems

Cristinel Mortici (2006)

Czechoslovak Mathematical Journal

Let T be a γ -contraction on a Banach space Y and let S be an almost γ -contraction, i.e. sum of an ε , γ -contraction with a continuous, bounded function which is less than ε in norm. According to the contraction principle, there is a unique element u in Y for which u = T u . If moreover there exists v in Y with v = S v , then we will give estimates for u - v . Finally, we establish some inequalities related to the Cauchy problem.

Currently displaying 481 – 500 of 538