Displaying 201 – 220 of 780

Showing per page

Existence of Periodic Solutions for Nonlinear Neutral Dynamic Equations with Functional Delay on a Time Scale

Abdelouaheb Ardjouni, Ahcène Djoudi (2013)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Let 𝕋 be a periodic time scale. The purpose of this paper is to use a modification of Krasnoselskii’s fixed point theorem due to Burton to prove the existence of periodic solutions on time scale of the nonlinear dynamic equation with variable delay x t = - a t h x σ t + c ( t ) x ˜ t - r t + G t , x t , x t - r t , t 𝕋 , where f is the -derivative on 𝕋 and f ˜ is the -derivative on ( i d - r ) ( 𝕋 ) . We invert the given equation to obtain an equivalent integral equation from which we define a fixed point mapping written as a sum of a large contraction and a compact map. We show...

Existence of positive periodic solutions of an SEIR model with periodic coefficients

Tailei Zhang, Junli Liu, Zhidong Teng (2012)

Applications of Mathematics

An SEIR model with periodic coefficients in epidemiology is considered. The global existence of periodic solutions with strictly positive components for this model is established by using the method of coincidence degree. Furthermore, a sufficient condition for the global stability of this model is obtained. An example based on the transmission of respiratory syncytial virus (RSV) is included.

Currently displaying 201 – 220 of 780