Previous Page 2

Displaying 21 – 29 of 29

Showing per page

Optimal design of an elastic beam with a unilateral elastic foundation: semicoercive state problem

Roman Šimeček (2013)

Applications of Mathematics

A design optimization problem for an elastic beam with a unilateral elastic foundation is analyzed. Euler-Bernoulli's model for the beam and Winkler's model for the foundation are considered. The state problem is represented by a nonlinear semicoercive problem of 4th order with mixed boundary conditions. The thickness of the beam and the stiffness of the foundation are optimized with respect to a cost functional. We establish solvability conditions for the state problem and study the existence of...

Optimal solutions for a model of tumor anti-angiogenesis with a penalty on the cost of treatment

Urszula Ledzewicz, Vignon Oussa, Heinz Schättler (2009)

Applicationes Mathematicae

The scheduling of angiogenic inhibitors to control a vascularized tumor is analyzed as an optimal control problem for a mathematical model that was developed and biologically validated by Hahnfeldt et al. [Cancer Res. 59 (1999)]. Two formulations of the problem are considered. In the first one the primary tumor volume is minimized for a given amount of angiogenic inhibitors to be administered, while a balance between tumor reduction and the total amount of angiogenic inhibitors given is minimized...

Optimality and sensitivity for semilinear bang-bang type optimal control problems

Ursula Felgenhauer (2004)

International Journal of Applied Mathematics and Computer Science

In optimal control problems with quadratic terminal cost functionals and systems dynamics linear with respect to control, the solution often has a bang-bang character. Our aim is to investigate structural solution stability when the problem data are subject to perturbations. Throughout the paper, we assume that the problem has a (possibly local) optimum such that the control is piecewise constant and almost everywhere takes extremal values. The points of discontinuity are the switching points. In...

Optimality Conditions for a Nonlinear Boundary Value Problem Using Nonsmooth Analysis

Mohamed Akkouchi, Abdellah Bounabat, Manfred Goebel (2003)

Annales mathématiques Blaise Pascal

We study in this paper a Lipschitz control problem associated to a semilinear second order ordinary differential equation with pointwise state constraints. The control acts as a coefficient of the state equation. The nonlinear part of the equation is governed by a Nemytskij operator defined by a Lipschitzian but possibly nonsmooth function. We prove the existence of optimal controls and obtain a necessary optimality conditions looking somehow to the Pontryagin’s maximum principle. These conditions...

Currently displaying 21 – 29 of 29

Previous Page 2