Page 1

Displaying 1 – 6 of 6

Showing per page

Linear independence of boundary traces of eigenfunctions of elliptic and Stokes operators and applications

Roberto Triggiani (2008)

Applicationes Mathematicae

This paper is divided into two parts and focuses on the linear independence of boundary traces of eigenfunctions of boundary value problems. Part I deals with second-order elliptic operators, and Part II with Stokes (and Oseen) operators. Part I: Let λ i be an eigenvalue of a second-order elliptic operator defined on an open, sufficiently smooth, bounded domain Ω in ℝⁿ, with Neumann homogeneous boundary conditions on Γ = tial Ω. Let φ i j j = 1 i be the corresponding linearly independent (normalized) eigenfunctions...

L∞-Norm minimal control of the wave equation: on the weakness of the bang-bang principle

Martin Gugat, Gunter Leugering (2008)

ESAIM: Control, Optimisation and Calculus of Variations


For optimal control problems with ordinary differential equations where the L -norm of the control is minimized, often bang-bang principles hold. For systems that are governed by a hyperbolic partial differential equation, the situation is different: even if a weak form of the bang-bang principle still holds for the wave equation, it implies no restriction on the form of the optimal control. To illustrate that for the Dirichlet boundary control of the wave equation in general not even feasible...

Currently displaying 1 – 6 of 6

Page 1