Hamiltonian form of the maximum principle
We study Hamilton-Jacobi equations related to the boundary (or internal) control of semilinear parabolic equations, including the case of a control acting in a nonlinear boundary condition, or the case of a nonlinearity of Burgers' type in 2D. To deal with a control acting in a boundary condition a fractional power – where (A,D(A)) is an unbounded operator in a Hilbert space X – is contained in the Hamiltonian functional appearing in the Hamilton-Jacobi equation. This situation has already...
In this paper we prove a H-convergence type result for the homogenization of systems the coefficients of which satisfy a functional ellipticity condition and a strong equi-integrability condition. The equi-integrability assumption allows us to control the fact that the coefficients are not equi-bounded. Since the truncation principle used for scalar equations does not hold for vector-valued systems, we present an alternative approach based on an approximation result by Lipschitz functions due to...
The paper deals with the analysis and the numerical solution of the topology optimization of system governed by variational inequalities using the combined level set and phase field rather than the standard level set approach. The standard level set method allows to evolve a given sharp interface but is not able to generate holes unless the topological derivative is used. The phase field method indicates the position of the interface in a blurry way but is flexible in the holes generation. In the...