The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
An optimal control problem governed by a quasilinear parabolic equation with additional constraints is investigated. The optimal control problem is converted to an optimization problem which is solved using a penalty function technique. The existence and uniqueness theorems are investigated. The derivation of formulae for the gradient of the modified function is explainedby solving the adjoint problem.
In this paper we study Lavrentiev-type regularization concepts for linear-quadratic parabolic control problems with pointwise state constraints. In the first part, we apply classical Lavrentiev regularization to a problem with distributed control, whereas in the second part, a Lavrentiev-type regularization method based on the adjoint operator is applied to boundary control problems with state constraints in the whole domain. The analysis for both classes of control problems is investigated and...
In this paper we study Lavrentiev-type regularization concepts for
linear-quadratic parabolic control problems with pointwise state constraints. In
the first part, we apply classical Lavrentiev regularization to a problem with
distributed control, whereas in the second part, a Lavrentiev-type
regularization method based on the adjoint operator is applied to boundary
control problems with state constraints in the whole domain. The analysis for
both classes of control problems is investigated and...
This paper is a proceedings version of the ongoing work [20], and has been the object of the talk of the second author at Journées EDP in 2012.In this work we investigate optimal observability properties for wave and Schrödinger equations considered in a bounded open set , with Dirichlet boundary conditions. The observation is done on a subset of Lebesgue measure , where is fixed. We denote by the class of all possible such subsets. Let . We consider first the benchmark problem of maximizing...
Si discretizza il problema dell'ostacolo parabolico con differenze all'indietro nel tempo ed elementi finiti lineari nello spazio e si dimostrano stime dell'errore per la frontiera libera discreta.
An axisymmetric second order elliptic problem with mixed boundarz conditions is considered. A part of the boundary has to be found so as to minimize one of four types of cost functionals. The numerical realization is presented in detail. The convergence of piecewise linear approximations is proved. Several numerical examples are given.
A control of the system of nonlinear Kármán's equations for a thin elastic plate with clamped edge is considered. The transversal loading plays the role of the control variable. The set of admissible controls is chosen in a way guaranteeing the unique solvability of the state function with respect to the control variable is proved. A disscussion of uniqueness of the optimal control and some necessary conditions of optimality are presented.
We shall deal with an optimal control problem for the deffection of a thin elastic plate. We consider the perpendicular load on the plate as the control variable. In contrast to the papers [1], [2], arbitrarily large loads are edmitted. As the unicity of a solution of the state equation is not guaranteed, we consider the cost functional defined on the set of admissible controls and states, and the state equation plays the role of the constraint. The existence of an optimal couple (i.e., control...
An approximation procedure for time optimal control problems for the linear wave equation is analyzed. Its asymptotic behavior is investigated and an optimality system including the maximum principle and the transversality conditions for the regularized and unregularized problems are derived.
Necessary conditions for some optimal control problem for a nonlinear 2-D system are considered. These conditions can be obtained in the form of a quasimaximum principle.
Currently displaying 1 –
20 of
61