Page 1 Next

Displaying 1 – 20 of 34

Showing per page

Second-order sufficient optimality conditions for a semilinear optimal control problem with nonlocal radiation interface conditions

Christian Meyer (2007)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a control constrained optimal control problem governed by a semilinear elliptic equation with nonlocal interface conditions. These conditions occur during the modeling of diffuse-gray conductive-radiative heat transfer. After stating first-order necessary conditions, second-order sufficient conditions are derived that account for strongly active sets. These conditions ensure local optimality in an Ls-neighborhood of a reference function whereby the underlying analysis allows...

Second-order sufficient optimality conditions for the optimal control of Navier-Stokes equations

Fredi Tröltzsch, Daniel Wachsmuth (2006)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper sufficient optimality conditions are established for optimal control of both steady-state and instationary Navier-Stokes equations. The second-order condition requires coercivity of the Lagrange function on a suitable subspace together with first-order necessary conditions. It ensures local optimality of a reference function in a L s -neighborhood, whereby the underlying analysis allows to use weaker norms than L .

Second-order sufficient optimality conditions for the optimal control of Navier-Stokes equations

Fredi Tröltzsch, Daniel Wachsmuth (2005)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper sufficient optimality conditions are established for optimal control of both steady-state and instationary Navier-Stokes equations. The second-order condition requires coercivity of the Lagrange function on a suitable subspace together with first-order necessary conditions. It ensures local optimality of a reference function in a Ls-neighborhood, whereby the underlying analysis allows to use weaker norms than L∞.

Shape optimization of materially non-linear bodies in contact

Jaroslav Haslinger, Raino Mäkinen (1997)

Applications of Mathematics

Optimal shape design problem for a deformable body in contact with a rigid foundation is studied. The body is made from material obeying a nonlinear Hooke’s law. We study the existence of an optimal shape as well as its approximation with the finite element method. Practical realization with nonlinear programming is discussed. A numerical example is included.

Singular perturbation for the Dirichlet boundary control of elliptic problems

Faker Ben Belgacem, Henda El Fekih, Hejer Metoui (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

A current procedure that takes into account the Dirichlet boundary condition with non-smooth data is to change it into a Robin type condition by introducing a penalization term; a major effect of this procedure is an easy implementation of the boundary condition. In this work, we deal with an optimal control problem where the control variable is the Dirichlet data. We describe the Robin penalization, and we bound the gap between the penalized and the non-penalized boundary controls for the small...

Singular perturbation for the Dirichlet boundary control of elliptic problems

Faker Ben Belgacem, Henda El Fekih, Hejer Metoui (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

A current procedure that takes into account the Dirichlet boundary condition with non-smooth data is to change it into a Robin type condition by introducing a penalization term; a major effect of this procedure is an easy implementation of the boundary condition. In this work, we deal with an optimal control problem where the control variable is the Dirichlet data. We describe the Robin penalization, and we bound the gap between the penalized and the non-penalized boundary controls for the small...

Some applications of optimal control theory of distributed systems

Alfredo Bermudez (2002)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we present some applications of the J.-L. Lions’ optimal control theory to real life problems in engineering and environmental sciences. More precisely, we deal with the following three problems: sterilization of canned foods, optimal management of waste-water treatment plants and noise control

Some Applications of Optimal Control Theory of Distributed Systems

Alfredo Bermudez (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we present some applications of the J.-L. Lions' optimal control theory to real life problems in engineering and environmental sciences. More precisely, we deal with the following three problems: sterilization of canned foods, optimal management of waste-water treatment plants and noise control

Currently displaying 1 – 20 of 34

Page 1 Next