Displaying 101 – 120 of 129

Showing per page

Some results for an optimal control problem with a semilinear state equation

Fausto Gozzi (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We consider a quadratic control problem with a semilinear state equation depending on a small parameter ϵ . We show that the optimal control is a regular function of such parameter.

Stability and sensitivity analysis for optimal control problems with a first-order state constraint and application to continuation methods

Joseph Frédéric Bonnans, Audrey Hermant (2008)

ESAIM: Control, Optimisation and Calculus of Variations

The paper deals with an optimal control problem with a scalar first-order state constraint and a scalar control. In presence of (nonessential) touch points, the arc structure of the trajectory is not stable. Under some reasonable assumptions, we show that boundary arcs are structurally stable, and that touch point can either remain so, vanish or be transformed into a single boundary arc. Assuming a weak second-order optimality condition (equivalent to uniform quadratic growth), stability and...

Structural Properties of Solutions to Total Variation Regularization Problems

Wolfgang Ring (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In dimension one it is proved that the solution to a total variation-regularized least-squares problem is always a function which is "constant almost everywhere" , provided that the data are in a certain sense outside the range of the operator to be inverted. A similar, but weaker result is derived in dimension two.

Subdifferential inclusions and quasi-static hemivariational inequalities for frictional viscoelastic contact problems

Stanisław Migórski (2012)

Open Mathematics

We survey recent results on the mathematical modeling of nonconvex and nonsmooth contact problems arising in mechanics and engineering. The approach to such problems is based on the notions of an operator subdifferential inclusion and a hemivariational inequality, and focuses on three aspects. First we report on results on the existence and uniqueness of solutions to subdifferential inclusions. Then we discuss two classes of quasi-static hemivariational ineqaulities, and finally, we present ideas...

Tilt stability in nonlinear programming under Mangasarian-Fromovitz constraint qualification

Boris S. Mordukhovich, Jiří V. Outrata (2013)

Kybernetika

The paper concerns the study of tilt stability of local minimizers in standard problems of nonlinear programming. This notion plays an important role in both theoretical and numerical aspects of optimization and has drawn a lot of attention in optimization theory and its applications, especially in recent years. Under the classical Mangasarian-Fromovitz Constraint Qualification, we establish relationships between tilt stability and some other stability notions in constrained optimization. Involving...

Un risultato di perturbazione per una classe di problemi ellittici variazionali di tipo superlineare

Luisa Di Piazza (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si considera il problema al contorno - Δ u = f ( x , u ) + ϵ ψ ( x , u ) in Ω , u | Ω = 0 , dove Ω n è un aperto limitato e connesso ed ϵ è un parametro reale. Si prova che, se f ( x , s ) + ϵ ψ ( x , s ) è «superlineare» ed ϵ è abbastanza piccolo, il problema precedente ha almeno tre soluzioni distinte.

Currently displaying 101 – 120 of 129