Previous Page 2

Displaying 21 – 27 of 27

Showing per page

Globalization of SQP-methods in control of the instationary Navier-Stokes equations

Michael Hintermüller, Michael Hinze (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

A numerically inexpensive globalization strategy of sequential quadratic programming methods (SQP-methods) for control of the instationary Navier Stokes equations is investigated. Based on the proper functional analytic setting a convergence analysis for the globalized method is given. It is argued that the a priori formidable SQP-step can be decomposed into linear primal and linear adjoint systems, which is amenable for existing CFL-software. A report on a numerical test demonstrates the feasibility...

Globalization of SQP-Methods in Control of the Instationary Navier-Stokes Equations

Michael Hintermüller, Michael Hinze (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

A numerically inexpensive globalization strategy of sequential quadratic programming methods (SQP-methods) for control of the instationary Navier Stokes equations is investigated. Based on the proper functional analytic setting a convergence analysis for the globalized method is given. It is argued that the a priori formidable SQP-step can be decomposed into linear primal and linear adjoint systems, which is amenable for existing CFL-software. A report on a numerical test demonstrates the feasibility...

Gradient flows in Wasserstein spaces and applications to crowd movement

Filippo Santambrogio (2010/2011)

Séminaire Équations aux dérivées partielles

Starting from a motivation in the modeling of crowd movement, the paper presents the topics of gradient flows, first in n , then in metric spaces, and finally in the space of probability measures endowed with the Wasserstein distance (induced by the quadratic transport cost). Differently from the usual theory by Jordan-Kinderlehrer-Otto and Ambrosio-Gigli-Savaré, we propose an approach where the optimality conditions for the minimizers of the optimization problems that one solves at every time step...

Gradient flows in Wasserstein spaces and applications to crowd movement

Filippo Santambrogio (2009/2010)

Séminaire Équations aux dérivées partielles

Starting from a motivation in the modeling of crowd movement, the paper presents the topics of gradient flows, first in n , then in metric spaces, and finally in the space of probability measures endowed with the Wasserstein distance (induced by the quadratic transport cost). Differently from the usual theory by Jordan-Kinderlehrer-Otto and Ambrosio-Gigli-Savaré, we propose an approach where the optimality conditions for the minimizers of the optimization problems that one solves at every time step...

Currently displaying 21 – 27 of 27

Previous Page 2