Previous Page 2

Displaying 21 – 26 of 26

Showing per page

Approximation of control problems involving ordinary and impulsive controls

Fabio Camilli, Maurizio Falcone (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we study an approximation scheme for a class of control problems involving an ordinary control v, an impulsive control u and its derivative u ˙ . Adopting a space-time reparametrization of the problem which adds one variable to the state space we overcome some difficulties connected to the presence of u ˙ . We construct an approximation scheme for that augmented system, prove that it converges to the value function of the augmented problem and establish an error estimates in L∞ for this approximation....

Approximation of the pareto optimal set for multiobjective optimal control problems using viability kernels

Alexis Guigue (2014)

ESAIM: Control, Optimisation and Calculus of Variations

This paper provides a convergent numerical approximation of the Pareto optimal set for finite-horizon multiobjective optimal control problems in which the objective space is not necessarily convex. Our approach is based on Viability Theory. We first introduce a set-valued return function V and show that the epigraph of V equals the viability kernel of a certain related augmented dynamical system. We then introduce an approximate set-valued return function with finite set-values as the solution of...

Approximation of the Snell envelope and american options prices in dimension one

Vlad Bally, Bruno Saussereau (2002)

ESAIM: Probability and Statistics

We establish some error estimates for the approximation of an optimal stopping problem along the paths of the Black–Scholes model. This approximation is based on a tree method. Moreover, we give a global approximation result for the related obstacle problem.

Approximation of the Snell Envelope and American Options Prices in dimension one

Vlad Bally, Bruno Saussereau (2010)

ESAIM: Probability and Statistics

We establish some error estimates for the approximation of an optimal stopping problem along the paths of the Black–Scholes model. This approximation is based on a tree method. Moreover, we give a global approximation result for the related obstacle problem.

Currently displaying 21 – 26 of 26

Previous Page 2