Displaying 81 – 100 of 315

Showing per page

Cooperative driving at isolated intersections based on the optimal minimization of the maximum exit time

Jia Wu, Abdeljalil Abbas-Turki, Florent Perronnet (2013)

International Journal of Applied Mathematics and Computer Science

Traditional traffic control systems based on traffic light have achieved a great success in reducing the average delay of vehicles or in improving the traffic capacity. The main idea of these systems is based on the optimization of the cycle time, the phase sequence, and the phase duration. The right-of-ways are assigned to vehicles of one or several movements for a specific time. With the emergence of cooperative driving, an innovative traffic control concept, Autonomous Intersection Management...

Decomposition of large-scale stochastic optimal control problems

Kengy Barty, Pierre Carpentier, Pierre Girardeau (2010)

RAIRO - Operations Research

In this paper, we present an Uzawa-based heuristic that is adapted to certain type of stochastic optimal control problems. More precisely, we consider dynamical systems that can be divided into small-scale subsystems linked through a static almost sure coupling constraint at each time step. This type of problem is common in production/portfolio management where subsystems are, for instance, power units, and one has to supply a stochastic power demand at each time step. We outline the framework...

Degenerate Eikonal equations with discontinuous refraction index

Pierpaolo Soravia (2006)

ESAIM: Control, Optimisation and Calculus of Variations

We study the Dirichlet boundary value problem for eikonal type equations of ray light propagation in an inhomogeneous medium with discontinuous refraction index. We prove a comparison principle that allows us to obtain existence and uniqueness of a continuous viscosity solution when the Lie algebra generated by the coefficients satisfies a Hörmander type condition. We require the refraction index to be piecewise continuous across Lipschitz hypersurfaces. The results characterize the value...

Deterministic minimax impulse control in finite horizon: the viscosity solution approach

Brahim El Asri (2013)

ESAIM: Control, Optimisation and Calculus of Variations

We study here the impulse control minimax problem. We allow the cost functionals and dynamics to be unbounded and hence the value functions can possibly be unbounded. We prove that the value function of the problem is continuous. Moreover, the value function is characterized as the unique viscosity solution of an Isaacs quasi-variational inequality. This problem is in relation with an application in mathematical finance.

Deterministic state-constrained optimal control problems without controllability assumptions

Olivier Bokanowski, Nicolas Forcadel, Hasnaa Zidani (2011)

ESAIM: Control, Optimisation and Calculus of Variations

In the present paper, we consider nonlinear optimal control problems with constraints on the state of the system. We are interested in the characterization of the value function without any controllability assumption. In the unconstrained case, it is possible to derive a characterization of the value function by means of a Hamilton-Jacobi-Bellman (HJB) equation. This equation expresses the behavior of the value function along the trajectories arriving or starting from any position x. In the constrained...

Deterministic state-constrained optimal control problems without controllability assumptions

Olivier Bokanowski, Nicolas Forcadel, Hasnaa Zidani (2011)

ESAIM: Control, Optimisation and Calculus of Variations

In the present paper, we consider nonlinear optimal control problems with constraints on the state of the system. We are interested in the characterization of the value function without any controllability assumption. In the unconstrained case, it is possible to derive a characterization of the value function by means of a Hamilton-Jacobi-Bellman (HJB) equation. This equation expresses the behavior of the value function along the trajectories arriving or starting from any position x. In...

Discrete time risk sensitive portfolio optimization with consumption and proportional transaction costs

Łukasz Stettner (2005)

Applicationes Mathematicae

Risk sensitive and risk neutral long run portfolio problems with consumption and proportional transaction costs are studied. Existence of solutions to suitable Bellman equations is shown. The asymptotics of the risk sensitive cost when the risk factor converges to 0 is then considered. It turns out that optimal strategies are stationary functions of the portfolio (portions of the wealth invested in assets) and of economic factors. Furthermore an optimal portfolio strategy for a risk neutral control...

Discrete-time Markov control processes with recursive discount rates

Yofre H. García, Juan González-Hernández (2016)

Kybernetika

This work analyzes a discrete-time Markov Control Model (MCM) on Borel spaces when the performance index is the expected total discounted cost. This criterion admits unbounded costs. It is assumed that the discount rate in any period is obtained by using recursive functions and a known initial discount rate. The classic dynamic programming method for finite-horizon case is verified. Under slight conditions, the existence of deterministic non-stationary optimal policies for infinite-horizon case...

Currently displaying 81 – 100 of 315