Second order conditions for periodic optimal control problems
We prove existence and uniqueness of viscosity solutions of Cauchy problems for fully nonlinear unbounded second order Hamilton-Jacobi-Bellman-Isaacs equations defined on the product of two infinite-dimensional Hilbert spaces H'× H'', where H'' is separable. The equations have a special "separated" form in the sense that the terms involving second derivatives are everywhere defined, continuous and depend only on derivatives with respect to x'' ∈ H'', while the unbounded terms are of first order...
We study the Hamilton-Jacobi equation of the minimal time function in a domain which contains the target set. We generalize the results of Clarke and Nour [J. Convex Anal., 2004], where the target set is taken to be a single point. As an application, we give necessary and sufficient conditions for the existence of solutions to eikonal equations.
We study the Hamilton-Jacobi equation of the minimal time function in a domain which contains the target set. We generalize the results of Clarke and Nour [J. Convex Anal., 2004], where the target set is taken to be a single point. As an application, we give necessary and sufficient conditions for the existence of solutions to eikonal equations.
We show the uniqueness and the existence of viscosity solutions of Hamilton-Jacobi equations on a smooth Banach space. The tool used is the variational principle of Deville, Godefroy and Zizler. The existence is given by Perron’s method. So we give a comparison assertion for semicontinuous solutions.
This paper studies a class of discrete-time discounted semi-Markov control model on Borel spaces. We assume possibly unbounded costs and a non-stationary exponential form in the discount factor which depends of on a rate, called the discount rate. Given an initial discount rate the evolution in next steps depends on both the previous discount rate and the sojourn time of the system at the current state. The new results provided here are the existence and the approximation of optimal policies for...
This is the expanded text of a lecture about viscosity solutions of degenerate elliptic equations delivered at the XVI Congresso UMI. The aim of the paper is to review some fundamental results of the theory as developed in the last twenty years and to point out some of its recent developments and applications.
We consider a quadratic control problem with a semilinear state equation depending on a small parameter . We show that the optimal control is a regular function of such parameter.
A zero-sum stochastic differential game problem on infinite horizon with continuous and impulse controls is studied. We obtain the existence of the value of the game and characterize it as the unique viscosity solution of the associated system of quasi-variational inequalities. We also obtain a verification theorem which provides an optimal strategy of the game.
A zero-sum stochastic differential game problem on infinite horizon with continuous and impulse controls is studied. We obtain the existence of the value of the game and characterize it as the unique viscosity solution of the associated system of quasi-variational inequalities. We also obtain a verification theorem which provides an optimal strategy of the game.