Page 1 Next

Displaying 1 – 20 of 23

Showing per page

A new regular multiplier embedding

Gemayqzel Bouza Allende, Jürgen Guddat (2013)

Kybernetika

Embedding approaches can be used for solving non linear programs P. The idea is to define a one-parametric problem such that for some value of the parameter the corresponding problem is equivalent to P. A particular case is the multipliers embedding, where the solutions of the corresponding parametric problem can be interpreted as the points computed by the multipliers method on P. However, in the known cases, either path-following methods can not be applied or the necessary conditions for its convergence...

A penalty method for topology optimization subject to a pointwise state constraint

Samuel Amstutz (2010)

ESAIM: Control, Optimisation and Calculus of Variations

This paper deals with topology optimization of domains subject to a pointwise constraint on the gradient of the state. To realize this constraint, a class of penalty functionals is introduced and the expression of the corresponding topological derivative is obtained for the Laplace equation in two space dimensions. An algorithm based on these concepts is proposed. It is illustrated by some numerical applications.

A Posteriori Error Estimation for Reduced Order Solutions of Parametrized Parabolic Optimal Control Problems

Mark Kärcher, Martin A. Grepl (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider the efficient and reliable solution of linear-quadratic optimal control problems governed by parametrized parabolic partial differential equations. To this end, we employ the reduced basis method as a low-dimensional surrogate model to solve the optimal control problem and develop a posteriori error estimation procedures that provide rigorous bounds for the error in the optimal control and the associated cost functional. We show that our approach can be applied to problems involving...

A sequential iteration algorithm with non-monotoneous behaviour in the method of projections onto convex sets

Gilbert Crombez (2006)

Czechoslovak Mathematical Journal

The method of projections onto convex sets to find a point in the intersection of a finite number of closed convex sets in a Euclidean space, may lead to slow convergence of the constructed sequence when that sequence enters some narrow “corridor” between two or more convex sets. A way to leave such corridor consists in taking a big step at different moments during the iteration, because in that way the monotoneous behaviour that is responsible for the slow convergence may be interrupted. In this...

An algorithm for construction of ε-value functions for the Bolza control problem

Edyta Jacewicz (2001)

International Journal of Applied Mathematics and Computer Science

The problem considered is that of approximate numerical minimisation of the non-linear control problem of Bolza. Starting from the classical dynamic programming method of Bellman, an ε-value function is defined as an approximation for the value function being a solution to the Hamilton-Jacobi equation. The paper shows how an ε-value function which maintains suitable properties analogous to the original Hamilton-Jacobi value function can be constructed using a stable numerical algorithm. The paper...

Analysis and finite element error estimates for the velocity tracking problem for Stokes flows via a penalized formulation

Konstantinos Chrysafinos (2004)

ESAIM: Control, Optimisation and Calculus of Variations

A distributed optimal control problem for evolutionary Stokes flows is studied via a pseudocompressibility formulation. Several results concerning the analysis of the velocity tracking problem are presented. Semidiscrete finite element error estimates for the corresponding optimality system are derived based on estimates for the penalized Stokes problem and the BRR (Brezzi-Rappaz-Raviart) theory. Finally, the convergence of the solutions of the penalized optimality systems as ε 0 is examined.

Analysis and finite element error estimates for the velocity tracking problem for Stokes flows via a penalized formulation

Konstantinos Chrysafinos (2010)

ESAIM: Control, Optimisation and Calculus of Variations

A distributed optimal control problem for evolutionary Stokes flows is studied via a pseudocompressibility formulation. Several results concerning the analysis of the velocity tracking problem are presented. Semidiscrete finite element error estimates for the corresponding optimality system are derived based on estimates for the penalized Stokes problem and the BRR (Brezzi-Rappaz-Raviart) theory. Finally, the convergence of the solutions of the penalized optimality systems as ε → 0 is examined. ...

Currently displaying 1 – 20 of 23

Page 1 Next