Previous Page 3

Displaying 41 – 58 of 58

Showing per page

Minimizing the fuel consumption of a vehicle from the Shell Eco-marathon: a numerical study

Sophie Jan (2013)

ESAIM: Control, Optimisation and Calculus of Variations

We apply four different methods to study an intrinsically bang-bang optimal control problem. We study first a relaxed problem that we solve with a naive nonlinear programming approach. Since these preliminary results reveal singular arcs, we then use Pontryagin’s Minimum Principle and apply multiple indirect shooting methods combined with homotopy approach to obtain an accurate solution of the relaxed problem. Finally, in order to recover a purely bang-bang solution for the original problem, we...

Numerical analysis for optimal shape design in elliptic boundary value problems

Zdeněk Kestřánek (1988)

Aplikace matematiky

Shape optimization problems are optimal design problems in which the shape of the boundary plays the role of a design, i.e. the unknown part of the problem. Such problems arise in structural mechanics, acoustics, electrostatics, fluid flow and other areas of engineering and applied science. The mathematical theory of such kind of problems has been developed during the last twelve years. Recently the theory has been extended to cover also situations in which the behaviour of the system is governed...

On the resolution of bipolar max-min equations

Pingke Li, Qingwei Jin (2016)

Kybernetika

This paper investigates bipolar max-min equations which can be viewed as a generalization of fuzzy relational equations with max-min composition. The relation between the consistency of bipolar max-min equations and the classical boolean satisfiability problem is revealed. Consequently, it is shown that the problem of determining whether a system of bipolar max-min equations is consistent or not is NP-complete. Moreover, a consistent system of bipolar max-min equations, as well as its solution set,...

Some applications of optimal control theory of distributed systems

Alfredo Bermudez (2002)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we present some applications of the J.-L. Lions’ optimal control theory to real life problems in engineering and environmental sciences. More precisely, we deal with the following three problems: sterilization of canned foods, optimal management of waste-water treatment plants and noise control

Some Applications of Optimal Control Theory of Distributed Systems

Alfredo Bermudez (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we present some applications of the J.-L. Lions' optimal control theory to real life problems in engineering and environmental sciences. More precisely, we deal with the following three problems: sterilization of canned foods, optimal management of waste-water treatment plants and noise control

Uniform Convergence of the Newton Method for Aubin Continuous Maps

Dontchev, Asen (1996)

Serdica Mathematical Journal

* This work was supported by National Science Foundation grant DMS 9404431.In this paper we prove that the Newton method applied to the generalized equation y ∈ f(x) + F(x) with a C^1 function f and a set-valued map F acting in Banach spaces, is locally convergent uniformly in the parameter y if and only if the map (f +F)^(−1) is Aubin continuous at the reference point. We also show that the Aubin continuity actually implies uniform Q-quadratic convergence provided that the derivative of f is Lipschitz...

Currently displaying 41 – 58 of 58

Previous Page 3