Page 1 Next

Displaying 1 – 20 of 28

Showing per page

Identification of critical curves. II. Discretization and numerical realization

Jaroslav Haslinger, Václav Horák, Pekka Neittaanmäki, Kimmo Salmenjoki (1991)

Applications of Mathematics

We consider the finite element approximation of the identification problem, where one wishes to identify a curve along which a given solution of the boundary value problem possesses some specific property. We prove the convergence of FE-approximation and give some results of numerical tests.

Kačanov-Galerkin method

Svatopluk Fučík, Alexander Kratochvíl, Jindřich Nečas (1973)

Commentationes Mathematicae Universitatis Carolinae

Limiti di problemi di Dirichlet nonlineari in domini variabili

Gianni Dal Maso, Anneliese Defranceschi (1987)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si studia il comportamento limite di successioni di problemi variazionali nonlineari con condizioni al contorno di Dirichlet su aperti variabili. I principali strumenti usati in questa ricerca sono le nozioni di Γ -convergenza e di μ -capacità nonlineare.

Multi-step-length gradient iterative method for separable nonlinear least squares problems

Hai-Rong Cui, Jing Lin, Jian-Nan Su (2024)

Kybernetika

Separable nonlinear least squares (SNLLS) problems are critical in various research and application fields, such as image restoration, machine learning, and system identification. Solving such problems presents a challenge due to their nonlinearity. The traditional gradient iterative algorithm often zigzags towards the optimal solution and is sensitive to the initial guesses of unknown parameters. In this paper, we improve the convergence rate of the traditional gradient method by implementing a...

Optimal solutions of multivariate coupling problems

Ludger Rüschendorf (1995)

Applicationes Mathematicae

Some necessary and some sufficient conditions are established for the explicit construction and characterization of optimal solutions of multivariate transportation (coupling) problems. The proofs are based on ideas from duality theory and nonconvex optimization theory. Applications are given to multivariate optimal coupling problems w.r.t. minimal l p -type metrics, where fairly explicit and complete characterizations of optimal transportation plans (couplings) are obtained. The results are of interest...

Currently displaying 1 – 20 of 28

Page 1 Next