A numerical method of matrix spectral factorization
We consider the finite element approximation of the identification problem, where one wishes to identify a curve along which a given solution of the boundary value problem possesses some specific property. We prove the convergence of FE-approximation and give some results of numerical tests.
Si studia il comportamento limite di successioni di problemi variazionali nonlineari con condizioni al contorno di Dirichlet su aperti variabili. I principali strumenti usati in questa ricerca sono le nozioni di -convergenza e di -capacità nonlineare.
Separable nonlinear least squares (SNLLS) problems are critical in various research and application fields, such as image restoration, machine learning, and system identification. Solving such problems presents a challenge due to their nonlinearity. The traditional gradient iterative algorithm often zigzags towards the optimal solution and is sensitive to the initial guesses of unknown parameters. In this paper, we improve the convergence rate of the traditional gradient method by implementing a...
Some necessary and some sufficient conditions are established for the explicit construction and characterization of optimal solutions of multivariate transportation (coupling) problems. The proofs are based on ideas from duality theory and nonconvex optimization theory. Applications are given to multivariate optimal coupling problems w.r.t. minimal -type metrics, where fairly explicit and complete characterizations of optimal transportation plans (couplings) are obtained. The results are of interest...