On a criterion of Yakubovich type for the absolute stability of nonautonomous control processes.
In this paper the adaptive control problem for a continuous infinite time-varying stochastic control system with jumps in parameters and quadratic cost is investigated. It is assumed that the unknown coefficients of the system have limits as time tends to infinity and the boundary system is absolutely observable and stabilizable. Under these assumptions it is shown that the optimal value of the quadratic cost can be reached based only on the values of these limits, which, in turn, can be estimated...
In a Hilbert space setting, necessary and sufficient conditions for the minimum norm solution u to the equation Su = Rz to be continuously dependent on z are given. These conditions are used to study the continuity of minimum energy and linear-quadratic control problems for infinite dimensional linear systems with fixed endpoints.
We study the Dirichlet boundary value problem for the -Laplacian of the form where is a bounded domain with smooth boundary , , , and is the first eigenvalue of . We study the geometry of the energy functional and show the difference between the case and the case . We also give the characterization of the right hand sides for which the above Dirichlet problem is solvable and has multiple solutions.
In this paper we study Lavrentiev-type regularization concepts for linear-quadratic parabolic control problems with pointwise state constraints. In the first part, we apply classical Lavrentiev regularization to a problem with distributed control, whereas in the second part, a Lavrentiev-type regularization method based on the adjoint operator is applied to boundary control problems with state constraints in the whole domain. The analysis for both classes of control problems is investigated and...
In this paper we study Lavrentiev-type regularization concepts for linear-quadratic parabolic control problems with pointwise state constraints. In the first part, we apply classical Lavrentiev regularization to a problem with distributed control, whereas in the second part, a Lavrentiev-type regularization method based on the adjoint operator is applied to boundary control problems with state constraints in the whole domain. The analysis for both classes of control problems is investigated and...
In this paper we solve the basic fractional analogue of the classical infinite time horizon linear-quadratic gaussian regulator problem. For a completely observable controlled linear system driven by a fractional brownian motion, we describe explicitely the optimal control policy which minimizes an asymptotic quadratic performance criterion.
In this paper we solve the basic fractional analogue of the classical infinite time horizon linear-quadratic Gaussian regulator problem. For a completely observable controlled linear system driven by a fractional Brownian motion, we describe explicitely the optimal control policy which minimizes an asymptotic quadratic performance criterion.
In this paper we study the existence of the optimal (minimizing) control for a tracking problem, as well as a quadratic cost problem subject to linear stochastic evolution equations with unbounded coefficients in the drift. The backward differential Riccati equation (BDRE) associated with these problems (see [chen], for finite dimensional stochastic equations or [UC], for infinite dimensional equations with bounded coefficients) is in general different from the conventional BDRE (see [1990], [ukl])....
The Linear-Quadratic (LQ) optimal control problem is studied for a class of first-order hyperbolic partial differential equation models by using a nonlinear infinite-dimensional (distributed parameter) Hilbert state-space description. First the dynamical properties of the linearized model around some equilibrium profile are studied. Next the LQ-feedback operator is computed by using the corresponding operator Riccati algebraic equation whose solution is obtained via a related matrix Riccati differential...
A continuous version of optimal LQG design under presence of Wiener disturbances is solved for MIMO controlled plant. Traditional design tools fail to solve this problem due to unstability of the augmented plant. A class of all optimality criteria, which guarantee existence of an asymptotical solution, is defined using a plant deviation model. This class is utilized in design of an optimal state and an error feedback regulator which is presented here. The resultant optimal error regulator is interpreted...
In this paper, we investigate the optimal location of secondary sources (controls) to enhance the reduction of the noise field in a one-dimensional acoustic cavity. We first formulate the active control strategy as a linear quadratic tracking (LQT) problem in a Hilbert space, and then formulate the optimization problem as minimizing an appropriate performance criterion based on the LQT cost function with respect to the location of the controls. A numerical scheme based on the Legendre–tau method...