Page 1

Displaying 1 – 8 of 8

Showing per page

On some optimal control problems for the heat radiative transfer equation

Sandro Manservisi, Knut Heusermann (2010)

ESAIM: Control, Optimisation and Calculus of Variations

This paper is concerned with some optimal control problems for the Stefan-Boltzmann radiative transfer equation. The objective of the optimisation is to obtain a desired temperature profile on part of the domain by controlling the source or the shape of the domain. We present two problems with the same objective functional: an optimal control problem for the intensity and the position of the heat sources and an optimal shape design problem where the top surface is sought as control. The problems...

On the inverse problem of the calculus of variations for ordinary differential equations

Olga Krupková (1993)

Mathematica Bohemica

Lepagean 2-form as a globally defined, closed counterpart of higher-order variational equations on fibered manifolds over one-dimensional bases is introduced, and elementary proofs of the basic theorems concerning the inverse problem of the calculus of variations, based on the notion of Lepagean 2-form and its properties, are given.

On the inverse variational problem in nonholonomic mechanics

Olga Rossi, Jana Musilová (2012)

Communications in Mathematics

The inverse problem of the calculus of variations in a nonholonomic setting is studied. The concept of constraint variationality is introduced on the basis of a recently discovered nonholonomic variational principle. Variational properties of first order mechanical systems with general nonholonomic constraints are studied. It is shown that constraint variationality is equivalent with the existence of a closed representative in the class of 2-forms determining the nonholonomic system. Together with...

On the projective Finsler metrizability and the integrability of Rapcsák equation

Tamás Milkovszki, Zoltán Muzsnay (2017)

Czechoslovak Mathematical Journal

A. Rapcsák obtained necessary and sufficient conditions for the projective Finsler metrizability in terms of a second order partial differential system. In this paper we investigate the integrability of the Rapcsák system and the extended Rapcsák system, by using the Spencer version of the Cartan-Kähler theorem. We also consider the extended Rapcsák system completed with the curvature condition. We prove that in the non-isotropic case there is a nontrivial Spencer cohomology group in the sequences...

On the solution of inverse problems for generalized oxygen consumption

Denis Constales, Jozef Kačur (2001)

Applications of Mathematics

We present the solution of some inverse problems for one-dimensional free boundary problems of oxygen consumption type, with a semilinear convection-diffusion-reaction parabolic equation. Using a fixed domain transformation (Landau’s transformation) the direct problem is reduced to a system of ODEs. To minimize the objective functionals in the inverse problems, we approximate the data by a finite number of parameters with respect to which automatic differentiation is applied.

On the solution of some inverse problems in infiltration

Denis Constales, Jozef Kačur (2001)

Mathematica Bohemica

In this paper we discuss inverse problems in infiltration. We propose an efficient method for identification of model parameters, e.g., soil parameters for unsaturated porous media. Our concept is strongly based on the finite speed of propagation of the wetness front during the infiltration into a dry region. We determine the unknown parameters from the corresponding ODE system arising from the original porous media equation. We use the automatic differentiation implemented in the ODE solver LSODA....

On the worst scenario method: Application to a quasilinear elliptic 2D-problem with uncertain coefficients

Petr Harasim (2011)

Applications of Mathematics

We apply a theoretical framework for solving a class of worst scenario problems to a problem with a nonlinear partial differential equation. In contrast to the one-dimensional problem investigated by P. Harasim in Appl. Math. 53 (2008), No. 6, 583–598, the two-dimensional problem requires stronger assumptions restricting the admissible set to ensure the monotonicity of the nonlinear operator in the examined state problem, and, as a result, to show the existence and uniqueness of the state solution....

Currently displaying 1 – 8 of 8

Page 1