Previous Page 3

Displaying 41 – 43 of 43

Showing per page

Dynamic Programming Principle for tug-of-war games with noise

Juan J. Manfredi, Mikko Parviainen, Julio D. Rossi (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a two-player zero-sum-game in a bounded open domain Ω described as follows: at a point x ∈ Ω, Players I and II play an ε-step tug-of-war game with probability α, and with probability β (α + β = 1), a random point in the ball of radius ε centered at x is chosen. Once the game position reaches the boundary, Player II pays Player I the amount given by a fixed payoff function F. We give a detailed proof of the fact that...

Dynamic Programming Principle for tug-of-war games with noise

Juan J. Manfredi, Mikko Parviainen, Julio D. Rossi (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a two-player zero-sum-game in a bounded open domain Ω described as follows: at a point x ∈ Ω, Players I and II play an ε-step tug-of-war game with probability α, and with probability β (α + β = 1), a random point in the ball of radius ε centered at x is chosen. Once the game position reaches the boundary, Player II pays Player I the amount given by a fixed payoff function F. We give a detailed proof of the fact that the value functions of this game satisfy the Dynamic Programming Principle...

Dynamic Programming Principle for tug-of-war games with noise

Juan J. Manfredi, Mikko Parviainen, Julio D. Rossi (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a two-player zero-sum-game in a bounded open domain Ω described as follows: at a point x ∈ Ω, Players I and II play an ε-step tug-of-war game with probability α, and with probability β (α + β = 1), a random point in the ball of radius ε centered at x is chosen. Once the game position reaches the boundary, Player II pays Player I the amount given by a fixed payoff function F. We give a detailed proof of the fact that...

Currently displaying 41 – 43 of 43

Previous Page 3