Page 1

Displaying 1 – 18 of 18

Showing per page

Mathematical analysis of the optimizing acquisition and retention over time problem

Adi Ditkowski (2009)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

While making informed decisions regarding investments in customer retention and acquisition becomes a pressing managerial issue, formal models and analysis, which may provide insight into this topic, are still scarce. In this study we examine two dynamic models for optimal acquisition and retention models of a monopoly, the total cost and the cost per customer models. These models are analytically analyzed using classical, direct, methods and asymptotic expansions (for the total cost model). In...

Mathematical analysis of the optimizing acquisition and retention over time problem

Adi Ditkowski (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

While making informed decisions regarding investments in customer retention and acquisition becomes a pressing managerial issue, formal models and analysis, which may provide insight into this topic, are still scarce. In this study we examine two dynamic models for optimal acquisition and retention models of a monopoly, the total cost and the cost per customer models. These models are analytically analyzed using classical, direct, methods and asymptotic expansions (for the total cost model). In...

Metric subregularity of order q and the solving of inclusions

Michaël Gaydu, Michel Geoffroy, Célia Jean-Alexis (2011)

Open Mathematics

We consider some metric regularity properties of order q for set-valued mappings and we establish several characterizations of these concepts in terms of Hölder-like properties of the inverses of the mappings considered. In addition, we show that even if these properties are weaker than the classical notions of regularity for set-valued maps, they allow us to solve variational inclusions under mild assumptions.

Minimax control of nonlinear evolution equations

Nikolaos S. Papageorgiou (1995)

Commentationes Mathematicae Universitatis Carolinae

In this paper we study the minimax control of systems governed by a nonlinear evolution inclusion of the subdifferential type. Using some continuity and lower semicontinuity results for the solution map and the cost functional respectively, we are able to establish the existence of an optimal control. The abstract results are then applied to obstacle problems, semilinear systems with weakly varying coefficients (e.gȯscillating coefficients) and differential variational inequalities.

Minimax LQG control

Ian Petersen (2006)

International Journal of Applied Mathematics and Computer Science

This paper presents an overview of some recent results concerning the emerging theory of minimax LQG control for uncertain systems with a relative entropy constraint uncertainty description. This is an important new robust control system design methodology providing minimax optimal performance in terms of a quadratic cost functional. The paper first considers some standard uncertainty descriptions to motivate the relative entropy constraint uncertainty description. The minimax LQG problem under...

Minimizing the fuel consumption of a vehicle from the Shell Eco-marathon: a numerical study

Sophie Jan (2013)

ESAIM: Control, Optimisation and Calculus of Variations

We apply four different methods to study an intrinsically bang-bang optimal control problem. We study first a relaxed problem that we solve with a naive nonlinear programming approach. Since these preliminary results reveal singular arcs, we then use Pontryagin’s Minimum Principle and apply multiple indirect shooting methods combined with homotopy approach to obtain an accurate solution of the relaxed problem. Finally, in order to recover a purely bang-bang solution for the original problem, we...

Modeling biased information seeking with second order probability distributions

Gernot D. Kleiter (2015)

Kybernetika

Updating probabilities by information from only one hypothesis and thereby ignoring alternative hypotheses, is not only biased but leads to progressively imprecise conclusions. In psychology this phenomenon was studied in experiments with the “pseudodiagnosticity task”. In probability logic the phenomenon that additional premises increase the imprecision of a conclusion is known as “degradation”. The present contribution investigates degradation in the context of second order probability distributions....

Modelling and control in pseudoplate problem with discontinuous thickness

Ján Lovíšek (2009)

Applications of Mathematics

This paper concerns an obstacle control problem for an elastic (homogeneous) and isotropic) pseudoplate. The state problem is modelled by a coercive variational inequality, where control variable enters the coefficients of the linear operator. Here, the role of control variable is played by the thickness of the pseudoplate which need not belong to the set of continuous functions. Since in general problems of control in coefficients have no optimal solution, a class of the extended optimal control...

Modelling Physiological and Pharmacological Control on Cell Proliferation to Optimise Cancer Treatments

J. Clairambault (2009)

Mathematical Modelling of Natural Phenomena

This review aims at presenting a synoptic, if not exhaustive, point of view on some of the problems encountered by biologists and physicians who deal with natural cell proliferation and disruptions of its physiological control in cancer disease. It also aims at suggesting how mathematicians are naturally challenged by these questions and how they might help, not only biologists to deal theoretically with biological complexity, but also physicians to optimise therapeutics, on which last point the...

Morrey regularity and continuity results for almost minimizers of asymptotically convex integrals

Mikil Foss, Antonia Passarelli di Napoli, Anna Verde (2008)

Applicationes Mathematicae

In a recent paper [Forum Math., 2008] the authors established some global, up to the boundary of a domain Ω ⊂ ℝⁿ, continuity and Morrey regularity results for almost minimizers of functionals of the form u Ω g ( x , u ( x ) , u ( x ) ) d x . The main assumptions for these results are that g is asymptotically convex and that it satisfies some growth conditions. In this article, we present a specialized but significant version of this general result. The primary purpose of this paper is provide several applications of this simplified...

Currently displaying 1 – 18 of 18

Page 1