Page 1

Displaying 1 – 10 of 10

Showing per page

Identification of source term in a nonlinear degenerate parabolic equation with memory

Soufiane Abid, Khalid Atifi, El-Hassan Essoufi, Abderrahim Zafrar (2024)

Applications of Mathematics

In this work, we consider an inverse backward problem for a nonlinear parabolic equation of the Burgers' type with a memory term from final data. To this aim, we first establish the well-posedness of the direct problem. On the basis of the optimal control framework, the existence and necessary condition of the minimizer for the cost functional are established. The global uniqueness and stability of the minimizer are deduced from the necessary condition. Numerical experiments demonstrate the effectiveness...

Increasing pursuer capturability by using hybrid dynamics

Valery Y. Glizer, Vladimir Turetsky (2015)

International Journal of Applied Mathematics and Computer Science

A robust interception of a maneuverable target (evader) by an interceptor (pursuer) with hybrid dynamics is considered. The controls of the pursuer and the evader are bounded. The duration of the engagement is prescribed. The pursuer has two possible dynamic modes, which can be switched once during the engagement, while the dynamics of the evader are fixed. The case where for both dynamic modes there exists an unbounded capture zone was analyzed in our previous work. The conditions under which the...

Integrability for vector-valued minimizers of some variational integrals

Francesco Leonetti, Francesco Siepe (2001)

Commentationes Mathematicae Universitatis Carolinae

We prove that the higher integrability of the data f , f 0 improves on the integrability of minimizers u of functionals , whose model is Ω | D u | p + ( det ( D u ) ) 2 - f , D u + f 0 , u d x , where u : Ω n n and p 2 .

Interior sphere property for level sets of the value function of an exit time problem

Marco Castelpietra (2009)

ESAIM: Control, Optimisation and Calculus of Variations

We consider an optimal control problem for a system of the form x ˙ = f(x,u), with a running cost L. We prove an interior sphere property for the level sets of the corresponding value function V. From such a property we obtain a semiconcavity result for V, as well as perimeter estimates for the attainable sets of a symmetric control system.

Inverse coefficient problems for variational inequalities : optimality conditions and numerical realization

Michael Hintermüller (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider the identification of a distributed parameter in an elliptic variational inequality. On the basis of an optimal control problem formulation, the application of a primal-dual penalization technique enables us to prove the existence of multipliers giving a first order characterization of the optimal solution. Concerning the parameter we consider different regularity requirements. For the numerical realization we utilize a complementarity function, which allows us to rewrite the optimality...

Inverse Coefficient Problems for Variational Inequalities: Optimality Conditions and Numerical Realization

Michael Hintermüller (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the identification of a distributed parameter in an elliptic variational inequality. On the basis of an optimal control problem formulation, the application of a primal-dual penalization technique enables us to prove the existence of multipliers giving a first order characterization of the optimal solution. Concerning the parameter we consider different regularity requirements. For the numerical realization we utilize a complementarity function, which allows us to rewrite the optimality...

Currently displaying 1 – 10 of 10

Page 1