2-blocking sets in PG(4, ), square.
ACM Computing Classification System (1998): E.4.Let q be a prime or a prime power ≥ 3. The purpose of this paper is to give a necessary and sufficient condition for the existence of an (n, r)-arc in PG(2, q ) for given integers n, r and q using the geometric structure of points and lines in PG(2, q ) for n > r ≥ 3. Using the geometric method and a computer, it is shown that there exists no (34, 3) arc in PG(2, 17), equivalently, there exists no [34, 3, 31] 17 code.This research was partially...
We present a survey on classical problems of Galois geometries. More precisely we discuss some problems and results about ovals, hyperovals, caps, maximal arcs and blocking sets in projective planes and spaces over Galois fields.
In questa Nota costruiamo una famiglia di -archi completi di tale che , per ogni . La dimostrazione della completezza si basa sul classico Teorema di Hasse-Weil riguardante il numero dei punti di una curva algebrica irriducibile di .
ACM Computing Classification System (1998): G.2.1.We prove that the minimum size of an affine blocking set in the affine plane AHG ...This research has been supported by the Scientific Research Fund of Sofia University under Contract No 109/09.05.2012.