2-blocking sets in PG(4, ), square.
Page 1 Next
Metsch, Klaus, Storme, L. (2000)
Beiträge zur Algebra und Geometrie
Bonisoli, A., Rinaldi, G. (2003)
Advances in Geometry
Hamada, Noboru, Maruta, Tatsuya, Oya, Yusuke (2012)
Serdica Journal of Computing
ACM Computing Classification System (1998): E.4.Let q be a prime or a prime power ≥ 3. The purpose of this paper is to give a necessary and sufficient condition for the existence of an (n, r)-arc in PG(2, q ) for given integers n, r and q using the geometric structure of points and lines in PG(2, q ) for n > r ≥ 3. Using the geometric method and a computer, it is shown that there exists no (34, 3) arc in PG(2, 17), equivalently, there exists no [34, 3, 31] 17 code.This research was partially...
Cherowitzo, William E., O'Keefe, Christine M., Penttila, Tim (2003)
Advances in Geometry
Francesco Mazzocca (2001)
Bollettino dell'Unione Matematica Italiana
We present a survey on classical problems of Galois geometries. More precisely we discuss some problems and results about ovals, hyperovals, caps, maximal arcs and blocking sets in projective planes and spaces over Galois fields.
Aiden Bruen, J. Chris Fisher (1972)
Mathematische Zeitschrift
Coolsaet, K., Sticker, H. (2010)
The Electronic Journal of Combinatorics [electronic only]
Olga Polverino (2000)
Bollettino dell'Unione Matematica Italiana
Blokhuis, A., Brouwer, A. E., Wilbrink, H. A. (2003)
Advances in Geometry
Hirschfeld, J. W. P., Korchmáros, G. (2003)
Advances in Geometry
Law, M., Penttila, T. (2003)
Advances in Geometry
O'Keefe, Christine M., Thas, J.A. (1996)
Bulletin of the Belgian Mathematical Society - Simon Stevin
Alderson, T. (2005)
The Electronic Journal of Combinatorics [electronic only]
Thas, Joseph A. (1998)
Documenta Mathematica
Giorgio Faina (1994)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
In questa Nota costruiamo una famiglia di -archi completi di tale che , per ogni . La dimostrazione della completezza si basa sul classico Teorema di Hasse-Weil riguardante il numero dei punti di una curva algebrica irriducibile di .
Kurtuluş, Aytaç, Olgun, Şükrü (2003)
APPS. Applied Sciences
Hamilton, Nicholas, Mathon, Rudolf (2003)
Advances in Geometry
Boev, Stoyan, Landjev, Ivan (2012)
Serdica Journal of Computing
ACM Computing Classification System (1998): G.2.1.We prove that the minimum size of an affine blocking set in the affine plane AHG ...This research has been supported by the Scientific Research Fund of Sofia University under Contract No 109/09.05.2012.
Govaerts, Patrick, Storme, Leo (2004)
Advances in Geometry
Fiedler, F., Leung, Ka Hin, Xiang, Qing (2003)
Advances in Geometry
Page 1 Next