The Planarity of the Equilateral, Isogonal Pentagon.
In this paper we summarize three recent results in computational geometry, that were motivated by applications in mathematical modelling of fluids. The cornerstone of all three results is the genuine construction developed by D. Sommerville already in 1923. We show Sommerville tetrahedra can be effectively used as an underlying mesh with additional properties and also can help us prove a result on boundary-fitted meshes. Finally we demonstrate the universality of the Sommerville's construction by...
We define an intersection product of tropical cycles on tropical linear spaces , i.e. on tropical fans of the type max. Afterwards we use this result to obtain an intersection product of cycles on every smooth tropical variety, i.e. on every tropical variety that arises from gluing such tropical linear spaces. In contrast to classical algebraic geometry these products always yield well-defined cycles, not cycle classes only. Using these intersection products we are able to define the pull-back...