Displaying 501 – 520 of 923

Showing per page

On volumes of arithmetic quotients of S O ( 1 , n )

Mikhail Belolipetsky (2004)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We apply G. Prasad’s volume formula for the arithmetic quotients of semi-simple groups and Bruhat-Tits theory to study the covolumes of arithmetic subgroups of S O ( 1 , n ) . As a result we prove that for any even dimension  n there exists a unique compact arithmetic hyperbolic n -orbifold of the smallest volume. We give a formula for the Euler-Poincaré characteristic of the orbifolds and present an explicit description of their fundamental groups as the stabilizers of certain lattices in quadratic spaces. We...

Parallelograms inscribed in a curve having a circle as π/2-isoptic

Andrzej Miernowski (2008)

Annales UMCS, Mathematica

Jean-Marc Richard observed in [7] that maximal perimeter of a parallelogram inscribed in a given ellipse can be realized by a parallelogram with one vertex at any prescribed point of ellipse. Alain Connes and Don Zagier gave in [4] probably the most elementary proof of this property of ellipse. Another proof can be found in [1]. In this note we prove that closed, convex curves having circles as π/2-isoptics have the similar property.

Pointed k -surfaces

Graham Smith (2006)

Bulletin de la Société Mathématique de France

Let S be a Riemann surface. Let 3 be the 3 -dimensional hyperbolic space and let 3 be its ideal boundary. In our context, a Plateau problem is a locally holomorphic mapping ϕ : S 3 = ^ . If i : S 3 is a convex immersion, and if N is its exterior normal vector field, we define the Gauss lifting, ı ^ , of i by ı ^ = N . Let n : U 3 3 be the Gauss-Minkowski mapping. A solution to the Plateau problem ( S , ϕ ) is a convex immersion i of constant Gaussian curvature equal to k ( 0 , 1 ) such that the Gauss lifting ( S , ı ^ ) is complete and n ı ^ = ϕ . In this paper, we show...

Currently displaying 501 – 520 of 923