Displaying 141 – 160 of 203

Showing per page

Reduced spherical polygons

Marek Lassak (2015)

Colloquium Mathematicae

For every hemisphere K supporting a spherically convex body C of the d-dimensional sphere S d we consider the width of C determined by K. By the thickness Δ(C) of C we mean the minimum of the widths of C over all supporting hemispheres K of C. A spherically convex body R S d is said to be reduced provided Δ(Z) < Δ(R) for every spherically convex body Z ⊂ R different from R. We characterize reduced spherical polygons on S². We show that every reduced spherical polygon is of thickness at most π/2. We...

Rotation indices related to Poncelet’s closure theorem

Waldemar Cieślak, Horst Martini, Witold Mozgawa (2015)

Annales UMCS, Mathematica

Let CRCr denote an annulus formed by two non-concentric circles CR, Cr in the Euclidean plane. We prove that if Poncelet’s closure theorem holds for k-gons circuminscribed to CRCr, then there exist circles inside this annulus which satisfy Poncelet’s closure theorem together with Cr, with ngons for any n > k.

Sets invariant under projections onto one dimensional subspaces

Simon Fitzpatrick, Bruce Calvert (1991)

Commentationes Mathematicae Universitatis Carolinae

The Hahn–Banach theorem implies that if m is a one dimensional subspace of a t.v.s. E , and B is a circled convex body in E , there is a continuous linear projection P onto m with P ( B ) B . We determine the sets B which have the property of being invariant under projections onto lines through 0 subject to a weak boundedness type requirement.

Currently displaying 141 – 160 of 203