Displaying 41 – 60 of 213

Showing per page

A geometrical method in combinatorial complexity

Jaroslav Morávek (1981)

Aplikace matematiky

A lower bound for the number of comparisons is obtained, required by a computational problem of classification of an arbitrarily chosen point of the Euclidean space with respect to a given finite family of polyhedral (non-convex, in general) sets, covering the space. This lower bound depends, roughly speaking, on the minimum number of convex parts, into which one can decompose these polyhedral sets. The lower bound is then applied to the knapsack problem.

A "hidden" characterization of approximatively polyhedral convex sets in Banach spaces

Taras Banakh, Ivan Hetman (2012)

Studia Mathematica

A closed convex subset C of a Banach space X is called approximatively polyhedral if for each ε > 0 there is a polyhedral (= intersection of finitely many closed half-spaces) convex set P ⊂ X at Hausdorff distance < ε from C. We characterize approximatively polyhedral convex sets in Banach spaces and apply the characterization to show that a connected component of the space C o n v ( X ) of closed convex subsets of X endowed with the Hausdorff metric is separable if and only if contains a polyhedral convex...

A "hidden" characterization of polyhedral convex sets

Taras Banakh, Ivan Hetman (2011)

Studia Mathematica

We prove that a closed convex subset C of a complete linear metric space X is polyhedral in its closed linear hull if and only if no infinite subset A ⊂ X∖ C can be hidden behind C in the sense that [x,y]∩ C ≠ ∅ for any distinct x,y ∈ A.

A measure of axial symmetry of centrally symmetric convex bodies

Marek Lassak, Monika Nowicka (2010)

Colloquium Mathematicae

Denote by Kₘ the mirror image of a planar convex body K in a straight line m. It is easy to show that K*ₘ = conv(K ∪ Kₘ) is the smallest by inclusion convex body whose axis of symmetry is m and which contains K. The ratio axs(K) of the area of K to the minimum area of K*ₘ over all straight lines m is a measure of axial symmetry of K. We prove that axs(K) > 1/2√2 for every centrally symmetric convex body and that this estimate cannot be improved in general. We also give a formula for axs(P) for...

A new algorithm for approximating the least concave majorant

Martin Franců, Ron Kerman, Gord Sinnamon (2017)

Czechoslovak Mathematical Journal

The least concave majorant, F ^ , of a continuous function F on a closed interval, I , is defined by F ^ ( x ) = inf { G ( x ) : G F , G concave } , x I . We present an algorithm, in the spirit of the Jarvis March, to approximate the least concave majorant of a differentiable piecewise polynomial function of degree at most three on I . Given any function F 𝒞 4 ( I ) , it can be well-approximated on I by a clamped cubic spline S . We show that S ^ is then a good approximation to F ^ . We give two examples, one to illustrate, the other to apply our algorithm.

Currently displaying 41 – 60 of 213