Displaying 1301 – 1320 of 1463

Showing per page

Universal tessellations.

David Singerman (1988)

Revista Matemática de la Universidad Complutense de Madrid

All maps of type (m,n) are covered by a universal map M(m,n) which lies on one of the three simply connected Riemann surfaces; in fact M(m,n) covers all maps of type (r,s) where r|m and s|n. In this paper we construct a tessellation M which is universal for all maps on all surfaces. We also consider the tessellation M(8,3) which covers all triangular maps. This coincides with the well-known Farey tessellation and we find many connections between M(8,3) and M.

Upper estimates on self-perimeters of unit circles for gauges

Horst Martini, Anatoliy Shcherba (2016)

Colloquium Mathematicae

Let M² denote a Minkowski plane, i.e., an affine plane whose metric is a gauge induced by a compact convex figure B which, as a unit circle of M², is not necessarily centered at the origin. Hence the self-perimeter of B has two values depending on the orientation of measuring it. We prove that this self-perimeter of B is bounded from above by the four-fold self-diameter of B. In addition, we derive a related non-trivial result on Minkowski planes whose unit circles are quadrangles.

Volume approximation of convex bodies by polytopes - a constructive method

Yehoram Gordon, Mathieu Meyer, Shlomo Reisner (1994)

Studia Mathematica

Algorithms are given for constructing a polytope P with n vertices (facets), contained in (or containing) a given convex body K in d , so that the ratio of the volumes |K∖P|/|K| (or |P∖K|/|K|) is smaller than f ( d ) / n 2 / ( d - 1 ) .

Volume comparison theorems for manifolds with radial curvature bounded

Jing Mao (2016)

Czechoslovak Mathematical Journal

In this paper, for complete Riemannian manifolds with radial Ricci or sectional curvature bounded from below or above, respectively, with respect to some point, we prove several volume comparison theorems, which can be seen as extensions of already existing results. In fact, under this radial curvature assumption, the model space is the spherically symmetric manifold, which is also called the generalized space form, determined by the bound of the radial curvature, and moreover, volume comparisons...

Volume et courbure totale pour les hypersurfaces de l'espace euclidien

Alexandru Oancea (2004)

Annales de l’institut Fourier

Nous étudions des analogues en dimension supérieure de l’inégalité de Burago A ( S ) R 2 T ( S ) , avec S une surface fermée de classe C 2 immergée dans 3 , A ( S ) son aire et T ( S ) sa courbure totale. Nous donnons un exemple explicite qui prouve qu’une inégalité analogue de la forme vol ( M ) C n R n T ( M ) , avec C n > 0 une constante, ne peut être vraie pour une hypersurface fermée M de classe C 2 dans n + 1 , n 3 . Nous mettons toutefois en évidence une condition suffisante sur la courbure de Ricci sous laquelle l’inégalité est vérifiée en dimension n = 3 . En dimension...

Volume ratios in L p -spaces

Yehoram Gordon, Marius Junge (1999)

Studia Mathematica

There exists an absolute constant c 0 such that for any n-dimensional Banach space E there exists a k-dimensional subspace F ⊂ E with k≤ n/2 such that i n f e l l i p s o i d ε B E ( v o l ( B E ) / v o l ( ε ) ) 1 / n c 0 i n f z o n o i d Z B F ( v o l ( B F ) / v o l ( Z ) ) 1 / k . The concept of volume ratio with respect to p -spaces is used to prove the following distance estimate for 2 q p < : s u p F p , d i m F = n i n f G L q , d i m G = n d ( F , G ) c p q n ( q / 2 ) ( 1 / q - 1 / p ) .

Currently displaying 1301 – 1320 of 1463