The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 141 –
160 of
200
We consider n × n real symmetric and hermitian random matrices Hₙ that are sums of a non-random matrix and of mₙ rank-one matrices determined by i.i.d. isotropic random vectors with log-concave probability law and real amplitudes. This is an analog of the setting of Marchenko and Pastur [Mat. Sb. 72 (1967)]. We prove that if mₙ/n → c ∈ [0,∞) as n → ∞, and the distribution of eigenvalues of and the distribution of amplitudes converge weakly, then the distribution of eigenvalues of Hₙ converges...
Motivated by the study of multidimensional control problems of Dieudonné-Rashevsky type, we raise the question how to understand to notion of quasiconvexity for a continuous function f with a convex body K instead of the whole space as the range of definition. In the present paper, we trace the consequences of an infinite extension of f outside K, and thus study quasiconvex functions which are allowed to take the value +∞. As an appropriate envelope, we introduce and investigate the lower semicontinuous...
The measurable sets of pairs of intersecting non-isotropic straight lines of type and the corresponding densities with respect to the group of general similitudes and some its subgroups are described. Also some Crofton-type formulas are presented.
We study the measurability of sets of pairs of straight lines with respect to the group of motions in the simply isotropic space by solving PDEs. Also some Crofton type formulas are obtained for the corresponding densities.
Let [A,B] be the family of pairs of compact convex sets equivalent to (A,B). We prove that the cardinality of the set of minimal pairs in [A,B] that are not translates of one another is either 1 or greater than ℵ₀.
Currently displaying 141 –
160 of
200