On the rank of a topological convexity
Let X be a Hausdorff topological vector space. For nonempty bounded closed convex sets A,B,C,D ⊂ X we denote by A ∔ B the closure of the algebraic sum A + B, and call the pairs (A,B) and (C,D) equivalent if A ∔ D = B ∔ C. We prove two main theorems on reduction of equivalent pairs. The first theorem implies that, in a finite-dimensional space, a pair of nonempty compact convex sets with a piecewise smooth boundary and parallel tangent spaces at some boundary points is not minimal. The second theorem...
Let X be an arbitrary set, and γ: X × X → ℝ any function. Let Φ be a family of real-valued functions defined on X. Let be a cyclic -monotone multifunction with non-empty values. It is shown that the following generalization of the Rockafellar theorem holds. There is a function f: X → ℝ such that Γ is contained in the -subdifferential of f, .
Let X be a normed space. A set A ⊆ X is approximately convexif d(ta+(1-t)b,A)≤1 for all a,b ∈ A and t ∈ [0,1]. We prove that every n-dimensional normed space contains approximately convex sets A with and , where ℋ denotes the Hausdorff distance. These estimates are reasonably sharp. For every D>0, we construct worst possible approximately convex sets in C[0,1] such that ℋ(A,Co(A))=(A)=D. Several results pertaining to the Hyers-Ulam stability theorem are also proved.
We prove a stability result on the minimal self-perimeter L(B) of the unit disk B of a normed plane: if L(B) = 6 + ε for a sufficiently small ε, then there exists an affinely regular hexagon S such that S ⊂ B ⊂ (1 + 6∛ε) S.
In this note we show that if the ratio of the minimal volume V of n-dimensional parallelepipeds containing the unit ball of an n-dimensional real normed space X to the maximal volume v of n-dimensional crosspolytopes inscribed in this ball is equal to n!, then the relation of orthogonality in X is symmetric. Hence we deduce the following properties: (i) if V/v=n! and if n>2, then X is an inner product space; (ii) in every finite-dimensional normed space there exist at least two different Auerbach...