A combinatorial theorem for a symmetric triangulation of the sphere
We introduce and study a rough (approximate) curvature-dimension condition for metric measure spaces, applicable especially in the framework of discrete spaces and graphs. This condition extends the one introduced by Karl-Theodor Sturm, in his 2006 article On the geometry of metric measure spaces II, to a larger class of (possibly non-geodesic) metric measure spaces. The rough curvature-dimension condition is stable under an appropriate notion of convergence, and stable under discretizations as...
We give a self-contained introduction to the theory of shadows as a tool to study smooth 3-manifolds and 4-manifolds. The goal of the present paper is twofold: on the one hand, it is intended to be a shortcut to a basic use of the theory of shadows, on the other hand it gives a sketchy overview of some of the most recent results on shadows. No original result is proved here and most of the details of the proofs are left out.
The paper gives an illustrated introduction to the theory of hyperbolic virtual polytopes and related counterexamples to A.D. Alexandrov’s conjecture.