On some classes of curves in a projective space
It is shown that in a plane with a radial density the four vertex theorem holds for the class of all simple closed curves if and only if the density is constant. On the other hand, for the class of simple closed curves that are invariant under a rotation about the origin, the four vertex theorem holds for every radial density.
We propose a weak formulation for the binormal curvature flow of curves in . This formulation is sufficiently broad to consider integral currents as initial data, and sufficiently strong for the weak-strong uniqueness property to hold, as long as self-intersections do not occur. We also prove a global existence theorem in that framework.
In a crystalline algorithm, a tangential velocity is used implicitly. In this short note, it is specified for the case of evolving plane curves, and is characterized by using the intrinsic heat equation.