Displaying 41 – 60 of 289

Showing per page

Characterization of compact subsets of curves with ω-continuous derivatives

Marcin Pilipczuk (2011)

Fundamenta Mathematicae

We give a characterization of compact subsets of finite unions of disjoint finite-length curves in ℝⁿ with ω-continuous derivative and without self-intersections. Intuitively, our condition can be formulated as follows: there exists a finite set of regular curves covering a compact set K iff every triple of points of K behaves like a triple of points of a regular curve. This work was inspired by theorems by Jones, Okikiolu, Schul and others that characterize compact subsets of...

Circuminscribed polygons in a plane annulus

Waldemar Cieślak, Elżbieta Szczygielska (2008)

Annales UMCS, Mathematica

Each oval and a natural number n ≥ 3 generate an annulus which possesses the Poncelet's porism property. A necessary and sufficient condition of existence of circuminscribed n-gons in an annulus is given.

Curvatures of conflict surfaces in Euclidean 3-space

Jorge Sotomayor, Dirk Siersma, Ronaldo Garcia (1999)

Banach Center Publications

This article extends to three dimensions results on the curvature of the conflict curve for pairs of convex sets of the plane, established by Siersma [3]. In the present case a conflict surface arises, equidistant from the given convex sets. The Gaussian, mean curvatures and the location of umbilic points on the conflict surface are determined here. Initial results on the Darbouxian type of umbilic points on conflict surfaces are also established. The results are expressed in terms of the principal...

Curves in Banach spaces which allow a C 1 , BV parametrization or a parametrization with finite convexity

Jakub Duda, Luděk Zajíček (2013)

Czechoslovak Mathematical Journal

We give a complete characterization of those f : [ 0 , 1 ] X (where X is a Banach space) which allow an equivalent C 1 , BV parametrization (i.e., a C 1 parametrization whose derivative has bounded variation) or a parametrization with bounded convexity. Our results are new also for X = n . We present examples which show applicability of our characterizations. For example, we show that the C 1 , BV and C 2 parametrization problems are equivalent for X = but are not equivalent for X = 2 .

Curves with finite turn

Jakub Duda (2008)

Czechoslovak Mathematical Journal

In this paper we study the notions of finite turn of a curve and finite turn of tangents of a curve. We generalize the theory (previously developed by Alexandrov, Pogorelov, and Reshetnyak) of angular turn in Euclidean spaces to curves with values in arbitrary Banach spaces. In particular, we manage to prove the equality of angular turn and angular turn of tangents in Hilbert spaces. One of the implications was only proved in the finite dimensional context previously, and equivalence of finiteness...

Currently displaying 41 – 60 of 289