Tautness and Lie Sphere Geometry.
Page 1 Next
Thomas E. Cecil, Shiing-Shen Chern (1987)
Mathematische Annalen
Özkaldi, Siddika, Yayli, Yusuf (2010)
Bulletin of the Malaysian Mathematical Sciences Society. Second Series
Arslan, Kadri, Ezentas, Ridvan, Mihai, Ion, Murathan, Cengizhan, Özgür, Cihan (2001)
Beiträge zur Algebra und Geometrie
V. I. Oliker (1982)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
F. Dillen (1990)
Mathematische Zeitschrift
J.W. Bruce (1981)
Mathematica Scandinavica
Reese Harvey, Frank Morgan (1986)
Inventiones mathematicae
Joel L. Weiner (1984)
Mathematische Annalen
Wolfgang Henke, Wolfgang Nettekoven (1987)
Manuscripta mathematica
Roger Moser (2007)
Journal of the European Mathematical Society
We consider the level set formulation of the inverse mean curvature flow. We establish a connection to the problem of -harmonic functions and give a new proof for the existence of weak solutions.
Oldřich Kowalski (1982)
Commentationes Mathematicae Universitatis Carolinae
Gerhard Huisken (1987)
Journal für die reine und angewandte Mathematik
Defever, Filip (1999)
Balkan Journal of Geometry and its Applications (BJGA)
N.H. Kuiper, W. III Meeks (1984)
Inventiones mathematicae
A. Montesinos-Amilibia (2008)
Revista Matemática Iberoamericana
Corro, A.V., Ferreira, W., Tenenblat, K. (2005)
Beiträge zur Algebra und Geometrie
d'Azevedo Breda, A.M., Craveiro de Carvalho, Francisco José (1994)
Beiträge zur Algebra und Geometrie
Craveiro de Carvalho, F.J. (1980)
Portugaliae mathematica
Al-Banawi, Kamal, Carter, Sheila (2005)
Beiträge zur Algebra und Geometrie
Ernst Kuwert, Tobias Lamm, Yuxiang Li (2015)
Journal of the European Mathematical Society
For two-dimensional, immersed closed surfaces , we study the curvature functionals and with integrands and , respectively. Here is the second fundamental form, is the mean curvature and we assume . Our main result asserts that critical points are smooth in both cases. We also prove a compactness theorem for -bounded sequences. In the case of this is just Langer’s theorem [16], while for we have to impose a bound for the Willmore energy strictly below as an additional condition....
Page 1 Next